

 Quantitative methods and statistics (In Sport and Exercise Science)

 Daniel Hammarström, Vilde Handegard

 2024-08-21

1 Quantitative methods and statistics (In Sport and Exercise Science)

2 Introduction

Welcome to the course Quantitative methods and Statistics (IDR4000). The course aims to give students an overview of methodological challenges within the sport and exercise-sciences, and strategies of addressing them. Specifically, planning, conducting and analysing research projects with human participants will be discussed in the course. During the course we will build habits for reproducible data analysis. Such habits includes developing knowledge about open-source tools for data science and statistics.

This book contains lecture notes for the course. Assignments, tutorials and other course material can be found at the course workshop site

2.1 Prerequisites

To fully benefit from the course I recommend that students bring a basic understanding of statistical concepts to the course, such as knowledge about descriptive data summarises, usage of inferential statistics and regression models. We aim to cover these concepts in the course but also hope to get further. If you are not sure your basic understanding is up to date you may want to review introductory material, such as Statistisk dataanalyse med jamovi.

In the course we will use R to do analyses, create figures and tables, and write reports. If you are unfamiliar with R, that is OK, the course hopefully provides a gentle introduction. Using R, together with additional data science tools, means that you will encounter many infuriating problems. Such problems might arise from a missing comma or a misspelled word making your computer program produce gibberish. Solving such problems requires patience, systematic thinking and a positive attitude! The skill set I hope you will develop during the course includes knowledge about how to identify problems, where to find help to address problems and how to learn from problems.

3 Introduction to data science

3.1 Making sense of data, transferable skills and teamwork

Data are everywhere! Most of us always walk around with a data collection device in our pockets. This device (your mobile phone) records and store data about you throughout the day. Much of this data is readily available to us because data privacy policies regard it as personal 1. With some effort, you can get your data out of your mobile phone to explore, for example, your daily step count. I discovered that my phone(s) has been collecting data for me since 2016, and I tend to walk fewer steps on Sundays than Saturdays (see Figure Figure 3.1).

[image:]

Figure 3.1: Step count data from my iPhone displayed as all avalable data points (A, after data cleaning) and average step per weekday, per year and season (B).

Data are also collected and stored in publicly available databases. Such databases are created for the purpose of storing specific types of data, such as soccer2 or biathlon results3, or biological information, such as gene sequences4. Even data from scientific studies are often publicly available5, meaning we can perform scientific studies on unique data sets without collecting the data ourselves.

The above are examples of data that are available to us. However, to make sense of the data we have we need special techniques and methods, and this is where data science comes in. In the world of sport and exercise, regardless if you are interested in doing scientific investigations, coaching a soccer team or individual athletes, or helping patients recover from surgery using exercise therapy, you are faced with the problem of making sense of data. It turns out that this is a very general problem and the skills you need to work on that problem are transferable between fields. This means that when you develop your data analysis skills within the sport and exercise sciences, you will likely also get better at solving problems outside this particular field.

In your future career, within, or outside the field of sport and exercise you will most likely be tasked with making sense of data, but making sense of data is often a team effort. Developing a better understanding of data science in general will make you a better team player in data intensive tasks. For example, knowing about possibilities and limitations for gaining knowledge from a particular data set can make you able to advice on decision-making in your organization.

3.2 Replication and Reproducibility

In scientific research, replication is a way to confirm scientific claims. A scientific claim is replicated when independent new data and new analyses brings us to similar conclusions as previous studies. When an independent group of researchers can confirm a result, the claim is more likely to be true. However, many results will be impossible to replicate due to the size of trials, costs, and urgency of the research question. A recent example is the many vaccine trials performed to develop a vaccine against COVID-19. Other examples are large-scale epidemiological studies (Peng, Dominici, and Zeger 2006), or studies with unique study populations such as elite athletes.

When studies are not likely to be replicated, reproducibility of the analyses and results has been suggested to be a minimum standard for scientific studies (Peng, Dominici, and Zeger 2006). Reproducibility means that independent researchers can draw similar conclusions from the same data (Peng, Dominici, and Zeger 2006).

Peng et al. (Peng, Dominici, and Zeger 2006) suggests that a fully reproducible study has

	Available data.

	Computer code (software) that produces the results of the study.

	Documentation that describes the software and data used in the study, and

	ways to share the data and code.

The above principally relates to the trust we can place in scientific results. However, the minimum reproducibility standard also has advantages for the individual researcher (or master’s student)! When working with reproducible methods, we will develop ways of documenting and automating our analyses. This way of working with analyses will make it easier to collaborate with others. And, as it turns out, your most frequent collaborator is you in the future!

Reproducible data analysis means that you will make your analysis explicit and transparent. In traditional data analysis, most activities are in the “black box.” To avoid bias (Ioannidis 2005), the “black box” needs to be opened, and you need to actively make transparent decisions all along the analytic pipeline (Leek and Peng 2015). This pipeline preferably involves the whole problem-solving cycle (Spiegelhalter 2019). However, the tools we will learn in this course focus primarily on the steps from the experimental design to the presentation of statistical results (Leek and Peng 2015). These steps include data collection (and storage), data cleaning, exploratory data analysis, statistical modelling, and statistical inference (and communication) (Leek and Peng 2015).

3.3 Tools in data science

The ways to interpret and make sense of data involve different methods. These methods are often implemented in computer software, which means that when you want to understand data as a practitioner (scientist, coach, analyst), you must master some computer software. Microsoft’s Excel is one of the most common software used to understand data, even among professional data scientists6. You can do fantastic stuff with Excel! In the world of sport and exercise, Excel has been used in diverse activities such as scientific investigations, planning and recording training for world champions7, and scheduling appointments.

For scientific research, most people use additional software to do statistical analyses. If you have spent time in higher education, you have probably heard about SPSS, Stata, or Jamovi. These are all specialized software used for statistical analyses and can be part of a fully reproducible workflow. However, some software solutions suit this requirement better than others. Going back to the description of reproducible science as made by Peng et al. (Peng, Dominici, and Zeger 2006), we want software where analyses can be

	Human- and computer-readable, meaning that we want to be able to write scripts or computer programs that execute the analyses.

	Documented, meaning that combined with the code, we want to be able to describe what the code does.

	Available and able to share with others, meaning that our analyses can be run on open and free software to maximize the ability to share them.

Together this means that the software we would prefer should be run using scripts (as opposed to point and click) and be free of charge (and open source, as opposed to expensive and proprietary). These criteria can be fulfilled when we use software written around the R language (although alternatives exist 8).

R is a computer language especially well suited for reproducible data analysis. As users can contribute software extensions, also called packages, many specialized software implementations exist for tasks such as creating figures or analysing specific data. Around R, people have been developing auxiliary software for reproducible data analysis. The negative part of all these opportunities is that using R requires effort. The learning curve is steep!

Even though you might not use R ever again after this course, trying to learn it will let you know something about programming, modern data science capabilities, statistical analysis, and software/computers in general. These areas are all aspects of our modern society and are transferable regardless of what computer language we are talking about.

A big challenge when working with complex analyses or other large projects over time is keeping track of changes. Another challenge might be effective collaboration with others and with yourself in the future. To overcome these challenges, we can use a version control system connected to a social platform for distributing computer code and data. Github is a web-based platform that provides this functionality. It is a potent combination if you want to collaborate and share what you are working on.

3.4 Installing and getting to know the required software

As noted above, there are multiple computer languages and software solutions that could satisfy our needs. However, in this course, we will focus on a combination of continuously improved tools to make it easy for the user to collaborate and communicate data analyses. Below is a check-list of what you must install on your system to take full advantage of the proposed tools.

3.4.1 R and RStudio

R is a free, open-source software designed for statistical computing. We will use R as a part of an environment (using R Studio, introduced below). To download and install R:

	Go to https://cran.uib.no/,

	Select your operating system (Download R for Windows, MacOS or Linux).

	If you have Windows, choose base, click on “Download R (…) for windows”, save and run the file. The installation process should be self explanatory.

	If you have MacOS, download and install the latest release.

	Run the installer to install R.

RStudio is a software designed to make it easier to use R. It is free to download and use. It is designed as an integrated development environment that lets you organize your work together with R and other tools. Install it by going to https://www.posit.co/.

	Select “Products” and RStudio IDE

	Scroll down and find the FREE open source edition

	Download the installer made for your operating system.

3.4.2 Git and Github

Git is a software that you need to install on your system in order to use version control. Github is the web platform that allows collaboration and web-based storage of your work. First, we will install git.

For windows:

	If you have Windows, Go to https://git-scm.com/downloads and download the latest version for your operating system.

	Run the installer. Make a note of where you installed it!

For Mac:

	If you are on Mac, the easiest thing is to first install Homebrew, this will make it easy to get the latest version of what we will need. Go to https://brew.sh/ and follow the instructions. Note that you will need to open the terminal and enter the install command.

	Install git by entering the follwing command in a freshly opened terminal:

brew install git

Check if git was installed by restarting the terminal and write

git --version

Additional warnings might appear indicating that you’ll need some extra software. More specifically, you might need Xcode command line tools. To install these, go to your terminal and enter

xcode-select --install

If you had problems with the homebrew installation itself or the brew installation of git before, try again after installing xcode command line tools.

3.4.3 Connecting to GitHub

First we will let RStudio know where git is located

	Open RStudio, go to Global Options under the Tools menu. Go to the Git/SVN sub-menu and find the folder where git.exe is located by browsing in the “Git executable” field.

On windows:

If you have installed git using default settings your git.exe should be located in C:/Program Files/Git/bin/git.exe.

On Mac:

If you have installed git using homebrew, your git version may be found in /usr/local/bin/git.

To register for a Github account

	Go to Github.com.

	Find “Sign up” and follow the instructions.

Next we need to connect our git software to github. This is done by authentication. There are several options, however below are two options that should work right away!

3.4.3.1 Installing GitHub desktop

	Go to desktop.github.com

	Download the installer and follow the instructions.

	Open GitHub Desktop and go to File > Options > Accounts and select Sign In to Github.com, follow the instructions

3.4.3.2 Installing Github CLI

If you were successful in authenticating with Github desktop as described above, you should be all set. However, as an alternative you could install and use Github CLI. This is a collection of command line commands that makes it easy to use github from the command line. I recommend installing them:

	Go to https://cli.github.com/ and follow the instructions.

	For windows, install GitHub CLI with the installer.

	For Mac, use homebrew: brew install gh

Next we will perform the authentication process:

	Open a terminal and type gh auth login, follow the instructions.

Done!

3.4.4 A note on Git and clients

As noted above, git is a software containing a number of functions for version control of files collected in a folder (or repository). A client in this context refers to a user interface that makes it easy to communicate with git. RStudio has some features that makes it possible to execute git commands by clicking, however this client is not very powerful, you might want another, or several other alternatives.

First, git is available from the command line. It might look like this:

git add -A

We will touch upon more git commands for the command line later. The above adds all changes you have made to a list of changes that will be included in your next snapshot of your project. More on that later!

Several Git clients can be run at the same time. This means that you might do some git on the command line in a terminal window in RStudio, and you might follow the changes in a graphical user interface, such as GitHub Desktop. The graphical user interface lets you navigate more easily and might help you understand what git is doing. We will be using GitHub desktop, so you make sure you have installed it (see above).

3.4.5 Quarto and friends

The R community has pioneered literate programming for data analysis by early adoption of file formats that lets the user combine computer code and output with text (Peng, Dominici, and Zeger 2006). A well adopted file format in recent years have been R markdown which combines R code with text and lets the user compile reports in multiple output formats from a source document. R markdown is an “R-centric” approach to literate programming. Even though it lets you combine multiple computer languages, all code execution goes through R. Recently, a new format was introduced, Quarto, which is not executed through R but its own dedicated software, Quarto.

Rmarkdown and Quarto have many similarities in that you can use markdown, a well established markup language to format text with a plain text editor (like notepad). This means that for the R user, most differences between RMarkdown and quarto in formatting your documents are irrelevant for getting started.

As quarto authoring requires its own software, we need to do some installation.

	Go to quarto.org

	Click “Get Started” and follow the instructions.

A nice output from a quarto source documents is a PDF. In order to create PDFs using R/RStudio/quarto we need to install a version of the typesetting system TeX. Quarto recommends9 using tinytex which is easily installed after you have installed quarto.

	Open up RStudio and a fresh terminal

	type quarto install tinytex and follow the instructions.

You should be ready to go now!

3.5 Summing up and where to find help

We have installed R, RStudio, git, GitHub desktop/CLI, quarto and tinytex. You have also created a github account. These are the tools that you will need to go further in this course. But what if you run into problems? Do not worry, the internet is at your service! A lot of people work very hard to make it easy for beginners to adopt their tools. Documentation of the tools we have installed so far is available through google or any other search engine. People are also very helpful in answering questions, answers to large and small problems can be found in forums such as stack overflow(see below).

Learning new skills, like doing data analysis by programming, can be hard but rewarding. If you want to make your learning experience less hard, consider these points:

	Practice by imitation. When you learn a new language, or when learning your first language as a baby you most likely start by imitating what you hear. Imitation is a pretty effective first step for learning a computer language too. Copy code, change small pieces and find out what it does. Whenever possible, write code, this will make you better at catching mistakes in your own code.

	There are (almost always) multiple solutions to a problem. When faced with difficulties, do not give up trying to search for a perfect single solution. Instead know that there are multiple ways of defining the problem and therefore multiple ways of making stuff work.

	Someone else has already had the same problem. The internet is full of questions and answers, also related to what ever problem you might have. Learning how to write “googleable” questions is a great skill. By adding “in R” to your problem in a google search term often helps finding R related solutions.

	Find your motivation. The skills that you will learn in this course are transferable to countless potential work related roles for the future you! The ability to showcase these skills may lead you to your dream job! Find your motivation for learning how to analyze data and communicating insights!

	“Microdosing” statistical learning. Replace your social media influencers with R users and data scientists! I find R people on Twitter and mastodon. Tweets and posts in this format keeps your R brain going!

3.5.1 A (small) list of reference material and resources

	R for Data Science is a very comprehensive guide to working with R. It can be used chapter by chapter or by looking for tips on specific subjects.

	The official An Introduction to R released by the R Core Team gives a thorough overview of R. This document can be used to find explanations to basic R code.

	Learning statistics with R Is a free textbook where statistical concepts are integrated with learning R. Use this book as a reference.

	Happy Git and GitHub for the useR is used as background material for our workshop in version control and collaborative data analysis.

	Tidyverse Is a collection of R packages that makes it easier to be productive in R. Here you will find documentation for ggplot, dplyr and tidyr which are all packages that we will use extensively in the course.

	Stack overflow is a web platform where users provide answers to questions raised by other users. Here you will find answers to many of your R-related questions. Stack overflow will likely come up if you google a R problem by you can also search the website.

	R bloggers collects blog posts from R users, here you can find interesting use cases of R and tips.

1. See e.g. Apples Privacy Policy.

2. understat.com stores match specific data from major leagues. Data are available through software packages such as worldfootballR

3. biathlonresults.com/ hosts results from the international biathlon federation. An example of analyzed data can be seen here.

4. Ensembl and the National center for biotechnology information are commonly used databases in the biomedical sciences.

5. We published our raw data together with a recent paper (Mølmen et al 2021 doi: 10.1186/s12967-021-02969-1.) together with code to analyze it in a public repository.

6. (See for example this ranking)[https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html].

7. The amount of time used by different coaches to create their own specific coaching software really makes many of them amateur software engineers. See for example this training journal from swedish orienteering. See also Microsofts own advertisement for Excel, it can be used to create fitness and diet plans!

8. In addition to R, Python offers a free open source environment for reproducible analyses. The choice between the two are matter of taste.

9. See the quarto documentation for details on creating pdfs and installing TeX distributions https://quarto.org/docs/output-formats/pdf-basics.html

4 Storing data in spreadsheets and understanding tabular data

We have previously mentioned spreadsheets like those created in Excel. These are great but not great for reproducible science or data analysis. This drawback is because they are not easily documented and scripted. The data is part of the analysis! Another danger with spreadsheets (like MS Excel) is that it re-formats your data. Re-formatting is such a big problem for scientists that they have started renaming genes to avoid confusion1

Errors are frequent in spreadsheets, not only because of renaming (Ziemann, Eren, and El-Osta 2016), but also because of wrong formatting of formulas (Stephen, Kenneth, and Barry 2009). These are both reasons for using spreadsheets only for what they do best: data input and storage (Broman and Woo 2018). Before going in to details about how to use your spreadsheet software and to avoid catastrophe, it’s good to know a little about the capabilities of your spreadsheet software.

4.1 Cells and simple functions

A spreadsheet consists of cells, these can contain values, such as text, numbers, formulas and functions. Cells may also be formatted with attributes such as color or text styles. Below is an example of some data entered in a spreadsheet (Figure 4.1).

[image:]

Figure 4.1: Example entries from an Excel spreadsheet

Cell B6 contains a simple formula: = C6 + D6. This formula adds cells C6 and D6 resulting in the sum, 8. In formulas, mathematical operators can be used (+,−,×,÷+, -, \times , \div). Formulas can be also extended with inbuilt function such as showed in Table 4.1.

Table 4.1: Often used functions in excel

	Function
	English
	Norwegian

	Sum
	SUM()
	SUMMER()

	Average
	AVERAGE()
	GJENNOMSNITT()

	Standard deviation
	STDEV.S()
	STDEV.S()

	Count
	COUNT()
	ANTALL()

	Intercept
	INTERCEPT()
	SKJÆRINGSPUNKT()

	Slope
	SLOPE()
	STIGNINGSTALL()

	If
	IF()
	HVIS()

The sum, average, standard deviation, and count are simple functions for summarizing data. Intercept and slope are functions used to get simple associations from two sets of numbers (based on a regression model). The IF function is an example of a function that can be used to enter data in a cell conditionally. For example, IF cell A1 contains a certain number, then cell B1 should display another specified text.

When looking for tips and tricks online, you may come across functions for excel in other languages than what is installed on your computer. To translate functions and for a complete overview of functions included in Microsoft Excel, see this website en.excel-translator.de/.

4.2 Tidy data and data storage

Hadley Wickham (the author of many commonly used R packages) quotes Tolstoy when describing the principle of tidy data (Wickham 2014). This Tolstoy quote is so famous that it has given name to a principle. The principle in turn comes in many variants but basically states that there are endless possibilities for something to break but only a limited number of ways that same thing can work2. This principle can be applied to data sets. There are endless ways that formatting of data sets can be problematic, but a limited set of ways that formatting will allow for analysis.

Leo Tolstoy, the author of the book Anna Karenina. (Source: https://en.wikipedia.org/wiki/Leo_Tolstoy)

A tidy data set consists of values originating from observations and belonging to variables. A variable is a definition of the values based on attributes. An observation may consist of several variables (Wickham 2014). A tidy data set typically has one observation per row and one variable per column.

Let’s say that we want to collect data from a strength test. A participant (participant identification is a variable) in our study conducts tests before and after the intervention (time is a variable) in two exercises (exercise is a variable), and we record the maximal strength in kg (load is a variable). The data set will look like the table below (Table 4.2).

Table 4.2: Example of tidy data

	Participant
	Time
	Exercise
	Load

	Bruce Wayne
	pre
	Bench press
	95

	Bruce Wayne
	post
	Bench press
	128

	Bruce Wayne
	pre
	Leg press
	180

	Bruce Wayne
	post
	Leg press
	280

Another example contains variables that actually carries two pieces of information in one variable. We again did a strength test, this time as maximal isometric contractions and in each test consisted of two attempts. We record this in two different variables, attempt 1 and 2. The resulting data set could look something like in Table Table 4.3.

Table 4.3: Another example of (almost) tidy data.

	Participant
	Time
	Exercise
	Attempt1
	Attempt2

	Selina Kyle
	pre
	Isometric
	81.3
	92.5

	Selina Kyle
	post
	Isometric
	97.1
	114.1

To make this data set tidy we need to extract the attempt information and record it in another variable as seen in Table 4.4.

Table 4.4: A third example of tidy data.

	Participant
	Time
	Exercise
	Attempt
	load

	Selina Kyle
	pre
	Isometric
	1
	81.3

	Selina Kyle
	pre
	Isometric
	2
	92.5

	Selina Kyle
	post
	Isometric
	1
	97.1

	Selina Kyle
	post
	Isometric
	2
	114.1

This transformation naturally gives additional rows to the data set. It is sometimes referred to as “long format” data instead of the structure where each attempt is given separate variables, called “wide format.” You will notice during the course that the long format is convenient for most purposes. This is true when we create graphs and do statistical modelling. But sometimes, a variable must be structured in a wide format to allow certain operations.

If we follow what is recommended by Broman and Woo (Broman and Woo 2018), it is clear that each cell in a spreadsheet should only contain one value. If we, for example, decide to format a cell to a certain colour, we add data to that cell on top of the actual data. You might add colour to a cell to remember to add or change data. However, this information is lost when you use the data set in other software. Instead, you should add another variable to allow such data to be properly recorded. Using a variable called comments, you can add text describing information about that particular observation, information that is not lost when you use the data set in another software.

4.3 Recording data

A trade secret3 from people who work all day with data and programming is that they are lazy. Lazy in the sense that you want to type as little as possible and avoid moving your arm to the computer mouse whenever possible. When recording data, we can be lazy too. We can do this by shortening variable names and not using CAPITAL letters when entering text in data storage. After a hard day at the keyboard, you will be happy to write strtest instead of Strength Test. The extra effort of using two capital letters might be the thing to tip you over the edge. However, we should not be too lazy either; variable names and values should be “short but meaningful” (Broman and Woo 2018).

Data and variables should also be consistent. Do not mix data type; use a consistent way of entering e.g., dates and time, and do not use spaces or special characters. To enforce this, you might want to start your data collection by writing up a data dictionary describing all variables you collect. The dictionary can set the rules for your variables. This dictionary can also guide your data validation.

In Excel, you can use data validation to set rules for data entry. For example, if you have a numeric variable, you can set Excel only to accept numbers in a specified set of cells. Such rules make it harder to enter erroneous data.

4.4 Saving data

Data from spreadsheets can be saved as special spreadsheet files, such as .xlsx. This format allows for functions, multiple spreadsheets in the same file (tabs), and cell formatting. You do not need this fancy format if you follow the tips described above and in (Broman and Woo 2018). Instead, you can store your data as a .csv file. This format may be read and edited with Excel (or another spreadsheet software) and in plain text. Data entered in this format (comma-separated values; csv) can look like this in a text editor:

 Participant;Time;Exercise;Attempt;load
 Selina Kyle;pre;Isometric;1;81.3
 Selina Kyle;pre;Isometric;2;92.5
 Selina Kyle;post;Isometric;1;97.1
 Selina Kyle;post;Isometric;2;114.1

This format is quite lovely. The data takes little space; the simple format requires that data is well documented using e.g., a data dictionary; and it is available for many other software as the format is simple. You can document the data using a README file that could describe the purpose and methods of data collection, how the data is structured, and what kind of data the variables contains. A simple README file can be written in a text editor such as Notepad and saved as a .txt file. Later in this course, we will introduce a “markup” language often used to create README files containing a syntax that formats the text to a more pleasant style when converted to other formats.

1. See this.

2. See https://en.wikipedia.org/wiki/Anna_Karenina_principle

3. A trade secret as in “not generally known to the public”. See en.wikipedia.org/wiki/Trade_secret.

5 Getting to know R and RStudio

In Chapter 3, we went through all the trouble of installing and setting up the tools needed to become data scientists. It is now assumed that everything was indeed installed and working. In this chapter we will introduce the usage of R and Rstudio. First we will set up and customize RStudio and then learn how to communicate with R.

5.1 The Anatomy of RStudio

The appearance of RStudio can be changed for a more pleasant user experience. I like a dark theme as it is easier on the eye. We can also move the different components of RStudio. I like to have the console on the top right and the source on the top left. I think this makes it easier to see output when coding interactively. All this will be clearer as thing evolve, but for now, start R Studio, go to Tools > Global options and make it personal (see Figure 5.1)!

[image:]

Figure 5.1: Customize the appearance of RStudio

As you may have spotted in the image above, it is possible to change the font of your editor. I like Fira code.

Defining concepts

Source editor: Is where scripts are edited.

Environment: In R, the environment is where data variables and structures are saved during execution of code.

Script: Your script is the document containing your computer code. This is your computer program (using a loose definition of a software program).

Variables: In R, variables are containers for data values.

Workspace: This is your environments as represented on your computer. A workspace can be, but should not be saved between sessions.

5.1.1 The source editor

The source editor is where you edit your code. When writing your code in a text-file, you can call it a script, this is essentially a computer program where you tell R what to do. It is executed from top to bottom. You can send one line of code, multiple lines or whole sections into R. In the image below (Figure 5.2), the source window is in the top left corner.

5.1.2 Environment

The environment is where all your objects are located. Objects can be variables or data sets that you are working with. In RStudio the environment is listed under the environment tab (bottom left in the image).

Copy the code below to a R script. To run it line by line, set your cursor on the first line a press Ctrl+Enter. What happened in your environment? Press Ctrl+Enter again and you will see a plot in the plot window. Amazing stuff!

a <- c(1, 2, 3, 4)

plot(a)

5.1.3 The console

By pressing Ctrl+Enter from the script, as described above, you sent your code to the console. You can also interact with R directly here. By writing a in the console and hitting enter you will get the value from the object called a. This means that it is also where output from R is usually printed. In the image below, the console is in the top right corner.

5.1.4 Files, plots, packages and help files

In RStudio files are accessible from the Files tab. The files tab shows the files in you root folder. The root folder is where R will search for files if you tell it to. We will talk more about the root folder later in connection with projects. Plots are displayed in the Plot tab. Packages are listed in the packages tab. If you access the help files, these will be displayed in the help tab. In the image below all these tabs are in the bottom right corner. More on help files and packages later.

[image:]

Figure 5.2: Interacting with RStudio

5.2 Reproducible data science using RStudio

When starting to work more systematically in RStudio we will set some rules that will allow for reproducible programming. Remember from Chapter 2 that part of a fully reproducible study is software/code that produces the results. It turns out that when working interactively with R you can fool yourself to believe that you have included all steps needed to produce some results in your script. However, variables may be stored in your environment but not by assigning values to them in your script. This will become a problem if you want to share your code, a certain value/variable needed to make the program work may be missing from your script.

To avoid making such a mistake it is good practice not to save variables in your environment between sessions, everything should be scripted and documented and assumed not defined elsewhere. In RStudio we can make an explicit setting Not to save the workspace (See ?@fig-saveworkspace).

5.3 Basic R programming, first steps

You have already been asked to run commands in your version of RStudio, below we will run some very basic commands here on this website to get first hand experience with the R language. Below you will find several script boxes that you may edit before pressing Run Code. When you run code, the results you would see in your terminal will appear below the script.

5.3.1 Objects and assignment

Everything in R are objects (Chambers 2009). What does this mean? Let’s say that we want to store some information in R, this information is a value, let’s say the number 12. To store this information we will assign the value to an object and call this object twelve. An object is a container of data “of all kinds” (Chambers 2009, 111) that we create in our working memory to hold our data (the value). We assign the value to our object by using an assignment operator. The most common assignment operator is <-. Think of the assignment operator as an arrow pointing from the value towards the object, like this:

twevle <- 12

We can also reverse the direction of the assignment operator and make the object and value change places.

12 -> twelve

To call an object, or tell R that we want to look at our object, we would simply type the object name in our R console. We may try this in the R script box below. I have already entered some information in the script, these are comments starting with the hash symbol (#). The comments tells us what to do. You can enter R code on the line below the comments, R will ignore everything following a comment sign and start to interpret code again on the subsequent line. When you have entered your code, press “Run Code” to inspect the results.

Store the value 12 in an object called twelve

Call the object 'twelve'

It is also possible to use the equal sign (=) to assign data to objects. The equal sign used as an assignment operator, as in twelve = 12, is equivalent to twelve <- 12.

5.3.2 R as a giant calculator

R can make use of all basic arithmetic operators like plus (+), minus (-), divided by (*) and multiplied by (/). These operators can be used on objects, and directly on values. In the script box below, try to calculate (and store) the following:

y=5*2+1*0.5y = 5 * 2 + 1 * 0.5 Then use the object and add 10, store the new result in a new object called z.

Use 'y <-' to assign the expression to the object y

A possible solution to the above challenge would be

y <- 5 * 2 + 1 * 0.5

z <- y + 10

The result of your computations should be 20.5. In the above example we have discovered that mathematical expression can be written using values and objects already stored in the environment.

We can also use functions to perform mathematical operations on objects. Examples of such functions are log(), exp(), abs() and sqrt(). A function is a special object that itself can be use other objects (or variables/values) as input. A function often takes arguments, these arguments are supplied to the function inside its brackets.

The log() function returns the natural logarithm of a numeric object. Mathematically, the log function returns the exponent (xx) with the base ee that give us our input number yy (ex=ye^x = y). To get the natural logarithm of 100 we would use R and write log(100) which results in 4.6051702. This corresponds to 100=2.7182824.60517100 = 2.718282 ^ {4.60517}. The base ee must be raised to the power of 4.60517 to yield 100.

What is the natural logarithm of 50? Try to calculate it in the script box below.

What is the natural logarithm of 50?

We can of course make similar computations on stored objects.

What is the natural logarithm of 25?
my_object <- 25

log(my_object)

Above we have learned that numbers and objects that store numbers can be used in computations using basic arithmetic operators and functions that perform mathematical operations.

5.3.3 Different types of data

Above we have worked on numeric data. These are values represented either as integers (whole numbers; e.g. 1, 2, 3) or what is sometimes called “double” or “numerical”, i.e. decimal numbers (e.g. 1.2 or 2.781).

In the code example below we will store an integer and a double and inspect its “class”, the class decides what R can do with an object.

num <- as.numeric(2.456)

int <- as.integer(2)

class(num)
class(int)

Use the script box below to test out the code example. What is the purpose of the class function?

There are other types of data that we can use in R, these are character, logical and complex (we will not discuss complex numbers further here).

A character or string value can be though of as text, e.g. "this is a character" could be the data contained in a character object. A logical value is either TRUE or FALSE. This type of data is also known as Boolean

As mentioned above, the type of data restricts what operations that can be performed using the data. For example, we cannot do mathematical operations on characters or logicals. Try out the code below and inspect the results. What does the error message tells you?

char <- "a"

logic <- TRUE

num <- 3.456

int <- as.integer(2)

num + int

num + int + char + logic

We can define data types by using functions such as as.numeric() or as.character() these will tell R to try to convert data to a specific type. If this is not possible you will get an error message. Try the code below and inspect the error message.

char <- "this is a string"

as.numeric(char)

The result of the conversion of a character to a numeric is NA, that can be read as Not Available. NA is an example of a protected symbol in R. We cannot use this as a name of an object. It is used to indicate missingness, or missing values.

In the above section we have identified different type of data that are used in R

5.3.4 Combining data

So far we have work on single valued objects. This is not very efficient. Conveniently, R has an efficient way of working with data using vectors. A vector is a structure for combining data of the same type. For example, we can construct a numeric vector of heights using the combine function c(). Let’s say height <- c(1.74, 1.81, 1.51, 1.92). An additional vector of weights can also be constructed as weight <- c(85.1, 81.1, 48.9, 88.4). We can use these vector to do calculations, these calculations will be “vectorized”.

The body mass index is calculated as

BMI=Weight (kg)Height (m)2BMI = \frac{\text{Weight (kg)}}{\text{Height (m)}^2} Using vectorized operations we can calculate BMI for each row of the two vectors defined above simply using BMI <- weight/height^2. Modify the code below to inspect each vector and the resulting BMI vector.

weight <- c(85.1, 81.1, 48.9, 88.4)
height <- c(1.74, 1.81, 1.51, 1.92)

BMI <- weight/height^2

Vectors can be combined into data frames. These are convenient tabular two-dimensional representations of multiple, equal length vectors. To combine the vectors defined above into a data frame we could directly put them in a data frame. In the example below we use df to name the data frame. To add a new variable (or vector) to the data frame we can use the $ operator which creates a new variable (or overwrites it!). Notice also that we access weight and height in the existing data.frame using the $ operator.

df <- data.frame(weight = c(85.1, 81.1, 48.9, 88.4),
 height = c(1.74, 1.81, 1.51, 1.92))

df$BMI <- df$weight / df$height^2

Alternatively we may access specific rows and columns of data frames using brackets. The syntax is df[row,column]. To access all row of a specific column, for example “weight” we would write df[,1]since weight is the first column of the data frame called “df”.

Try to calculate BMI using the row index method explained above.

A data frame can combine different data types in the same data structure. The data are, as indicate above related by row as one row contains e.g. weight and height from one individual. We might add information on the individuals by adding variables of different types. Modify and run the code below to inspect the data frame.

df <- data.frame(name = c("David", "Even", "Julie", "Hubert"),
 male = c(TRUE, TRUE, FALSE, TRUE),
 weight = c(85.1, 81.1, 48.9, 88.4),
 height = c(1.74, 1.81, 1.51, 1.92))

We can further combine data into a list. A list can contain different data structures or values/objects. A list can even contain other lists. To combine objects into a list we simply put them into the list() function. To access objects in lists we can use double brackets. E.g., using the code below we could access the second item in the list using my_list[[2]]. Objects in lists can also be named, in such cases we can use the $ operator to access them. Modify the code below to explore this concept.

df <- data.frame(name = c("David", "Even", "Julie", "Hubert"),
 male = c(TRUE, TRUE, FALSE, TRUE),
 weight = c(85.1, 81.1, 48.9, 88.4),
 height = c(1.74, 1.81, 1.51, 1.92))

a_value <- 56

multiple_characters <- c("this", "is", "a", "string")

my_list <- list(df, a_value, characters = multiple_characters)

5.3.5 Logical operations and conditions

In the future you will select observations based on some specific conditions. This could for example mean that you would want to keep all observations where the variable X is greater than 5. To communicate this to R we would create a vector of TRUE and FALSE. R will keep all observations that satisfy our condition and therefore are TRUE.

In the script box below, we first construct a vector of numbers followed by a logical test. The test will result in TRUE when the condition is satisfied. Notice that the “test” gives you a vector of TRUE/FALSE.

Construct a vector of numbers
my_values <- c(3,4,6,7,5,7,8,9,2,1,3)
Create a logical test
my_values > 5

In the example above we used the ‘greater than’ operator (>). There are a few more usefull operators:

	Operator
	Meaning

	==
	equal to

	!=
	not equal to

	<
	less than

	>
	greater than

	<=
	less than or equal to

	>=
	greater than or equal to

Try to modify the script box above to test out the different operators.

Using the “AND” operator (&) we can add conditions that needs to be fulfilled to produce TRUE. This might be useful when two or more conditions needs to be satisfied. In addition to our values stored in my_values in the script box above, we might want to see the condition colors == "green" satisfied as well, where colors is a vector of colours. Run the codse below and inspect the results

colors <- c("green", "red", "violet", "brown", "green", "green", "blue", "green", "yellow", "yellow", "red")

Combined conditions, both needs to be true
my_values > 5 & colors == "green"

We can store the results in a vector or use it to select values in a vector. Using brackets on a vector (or data frame) we can select observations based on a logical vector (produced by logical tests).

my_values[my_values > 5 & colors == "green"]

Using the “NOT” operator (!) we can perform negation on any of the logical operators. Let’s say we want have all observations that do not satisfy our filter above. Run the code below and inspect the results. Notice the parentheses which indicates that we put the negation on the whole expression.

my_values[!(my_values > 5 & colors == "green")]

The “OR” operator (|) gives us the possibility to select values that satisfies one or both of tqo conditions.

my_values > 5 | colors == "green"

Try to put the above in square brackets and filter one of the vectors to see that you get what you anticipate.

Finally, we could test if a logical vector contains TRUE or if all values are TRUE. To do this we would use the functions any() and all().

any(colors == "green") # There are at least one TRUE
all(colors == "green") # Not all values are TRUE

5.3.6 Functions

We mentioned above that everything in R is an object. This is true even when we talk about functions. Functions are special kind of objects, they contain code that upon execution perform certain tasks. A function may need to have certain arguments specified. Arguments are user input into the function to specify how the functions should behave. A common usage of a function is to do something with data that you, the user, supply to the function.

Let’s specify a function to see what it does. We have a vector of numbers, let’s say my_values. We want to construct a function that calculates the mean of that vector. The function may later be used to calculate averages of other vectors so we should try to make it as general as possible. Let’s start with the design of the actual calculation1.

The mean (x‾\bar{x}) of a vector (xix_i) is calculated as

x‾=1n∑i=1nxi=x1+x2+⋯+xnn\begin{align}
\bar{x}&=\frac {1}{n} \sum_{i=1}^{n}x_{i} \\
&= \frac {x_{1}+x_{2}+\cdots +x_{n}}{n}
\end{align}

Which we can read as “one or the number of observations times the sum of all observations”. Or, as in the second row, the sum of all observations divided by the number of observations.

We can translate this to code. A simple way to do this is to use other functions, in this case length() that returns the number of observations (or length) in a vector, and sum() that gives us the sum of all observations in a numeric vector. In the code block below I have simply combined data with the expression needed to calculate the average.

some_values <- c(3, 4, 5, 6, 7, 8)

1/length(some_values) * sum(some_values)

The next step is to put the code into a function. A function is defined using a special function, called function! Confusing? Yes. Let’s see how it is done.

my_mean_function <- function(DATA) {
 1/length(DATA) * sum(DATA)
}

Using function we define the function called my_mean_function. Using the assignment operator it is stored in our environment (R’s working memory). The function “body” contains the code. It says that it will use an object called DATA that should be given as an argument in the function call, notice that we have defined the function with an argument called DATA.

Since we are not storing the output from the calculation 1/length(DATA) * sum(DATA) in any new object inside the function running the function in our R session will return the mean of what ever we define as DATA.

In the script block below we have everything defined. Try out the function by modifying the code so that it prints my_mean.

my_mean_function <- function(DATA) {
 1/length(DATA) * sum(DATA)
}

my_mean <- my_mean_function(my_values)

Of course, there is already a function that will give you the mean of a numeric vector and it is called mean(). In the simple case, the mean() function takes one argument x that should be a numeric vector. It could look like this:

mean(my_values) # Calculate the mean of your vector.

Defining functions for yourself can be a very efficient way of performing data analysis, but most functions that you need are already specified in R. Other people have already gone trough the trouble of defining functions that are easy to use for specific tasks.

5.3.7 Functions and packages

The R ecosystem consists of packages. These are collections of functions organized in a systematic manner. Functions are created to perform a specialized task. And packages often have many function used to do e.g. analyses of a specific kind of data, or more general task such as making figures or handle data.

In this course we will use many different packages, for example dplyr, tidyr and ggplot2. dplyr and tidyr are packages used to transform and clean data. ggplot2 is used for making figures.

To install a package, you use the install.packages() function. You only need to do this once on your computer (unless you re-install R). You can write the following code in your console to install dplyr.

install.packages("dplyr")

Alternatively, click “Packages” and “Install” and search for the package you want to install. To use a package, you have to load it into your environment. Use the library() function to load a package.

library("dplyr")

We will become familiar with packages as we move along in the course.

5.4 Basics R programming: Installing and using swirl

Swirl is a great way to get to know how to talk with R. Swirl consists of lessons that run in your R console where you interactively will be able to learn basic concepts. Start RStudio and install swirl by typing the following into your console:

install.packages("swirl")

When swirlis installed you will need to load the package This means that all functions that are included in package becomes available to you in your R session. To load the package you use the library function.

library("swirl")

When you run the above command in your console you will get a message saying to call swirl() when you are ready to learn. At this stage, run the course “R Programming: The basics of programming in R”. Swirl will ask if you want to install it. After installation, just follow the instructions in the console. To get out of swirl, just press ESC.

5.5 File formats for editing and executiong R code

A confusing part of using R is that we are really just able to communicate with R through the console. There are however a lot of methods to do this, and save your input, and output for later. This is central to how we will work with R: We create some input (code), R returns results, like numbers, text or figures and these can be formatted to be saved in different formats.

5.5.1 R scripts

The most basic file format for R code is an R script, as we have already touched upon. An R script contains code and comments. Code is executed by R and comments are ignored. Ideally, R scripts are commented to improve readability of what the do. Commenting code is also a good way of creating a roadmap of what you want to do. In the image below (Figure 5.3), R code is written based on a plan written with comments. Note that when a line starts with at least one # it is interpreted by R as a comment.

[image:]

Figure 5.3: Commenting and coding in an R script

Try the code for yourself to see what it produces. The details will be covered later.

Create two vectors of random numbers
x <- rnorm(10, 0, 1)
y <- rnorm(10, 10, 10)

Create an x-y plot of the two vectors
plot(x, y)

In RStudio code will be highlighted with different colours to indicate e.g. functions and and arguments in functions. RStudio has the capabilities to do this for multiple languages.

5.5.2 R markdown and quarto files

The more advanced file formats for R are RMarkdown (.rmd) and quarto (.qmd) files. These have the capabilities of combining formatted text with computer code. The source document may contain multiple pieces of code organized in code chunks together with text formatted with markdown syntax. A meta data field in the top of the source file specifies settings for the conversion to output formats. Multiple output formats are available, including HTML, word and PDF. The image below shows the basic outline of a very simple quarto file destined to create a HTML document.

Notice also that RStudio offers an visual editor where the output is approximated and formatting is available from a menu.

Adding headlines and makes it possible to navigate the document through the outline or the list of components in the bottom of the document.

[image:]

Authoring in a quarto source document and preview in the visual editor

R markdown and quarto have many similarities as the basic organization is similar between the two. The text parts are written using a special syntax, markdown. The point of markdown is that you will use the same syntax that is later possible to convert to multiple formats. The syntax let’s you do all formatting explicitly, for example instead of getting your mouse to superscript some text you can add syntax a^2^ to achieve a2.

A full guide to RMarkdown can be found on the official R markdown web pages. I suggest you take the time to get an overview of this language as it will make you more fluent in the tools that enables reproducible computing. When writing R markdown, it is handy to have a cheat sheet close by when writing, here is an example for Rmarkdown, and here is another one for quarto 2.

We will cover the quarto publication system in more details in later chapters.

1. Don’t be afraid of mathematics! Take it slow and translate it to your language. Some books on statistics are a lot easier to read if you are prepared to read simple mathematical expressions. Sometimes it is also good to be able to write an expression. Mathematics, like computer code, is also a language. To learn a new language we need to try not to be afraid!

2. Cheat sheets are available in R Studio: Help > Cheatsheets

6 Creating your first graph

Data visualization is an efficient way to understand data. Using graphs, we can communicate characteristics of a data set in a way that would have been impossible with a limited number of summary statistics, such as the mean and standard deviation. In Chapter 2 of his book (Spiegelhalter 2019), Spiegelhalter touches upon this fact when he describes different types of graphs and their use to understand various data sets. An important argument for mastering data visualization is understanding what variables might explain variation in a given data set (Spiegelhalter 2019). In this sense, data visualization can be thought of as an initial step in understanding data; data visualization is an exploratory tool.

RStudio is a powerful environment for data visualization. Together with R (which is excellent for creating graphs), you can create and preview figures that represent your data.

R has got several systems for creating figures, plots, graphs. In this course, we will use ggplot2. Another system for plotting comes with the base installation of R. This is sometimes referred to as base R (see this tutorial, or this. Another well described and used system is lattice.

We choose ggplot2 because it works well with the tidyverse, it is well described and used by many.

6.1 Resources

There are several good resources aimed at ggplot2:

	Chapter 2 in R for data science

	The ggplot2 book

	The ggplot2 cheatsheet

6.2 Learning objectives

After working through this chapter, you should be able to answer:

	What are geoms?

	What is mapping data to aesthetics?

	What are theme components?

You should also be able to create your first graph.

6.3 Prerequisites

To follow the exercises below you will need some data. For the purpose of this course, I have created a package that contains the data sets we need. In this chapter we will work with the cyclingstudy data set that is a part of the exscidata package. To install the package (exscidata) you will need another package, called remotes.

The code below first checks if the package remotes is installed, or more specifically, if "remotes" cannot be found in the list of installed packages. Using the if function makes install.packages(remotes) conditional. If we do not find "remotes" among installed packages, then install remotes.

The next line of code does the same with the exscidata package. However, since the package is not on CRAN but hosted on GitHub we will need to use remotes to install it. The part of the second line of code that says remotes::install_github("dhammarstrom/exscidata") uses the function install_github without loading the remotes package. The last line of the code below loads the package exscidata using the library function.

Check if remotes is not installed, if TRUE, install remotes
if (!"remotes" %in% installed.packages()) install.packages(remotes)

Check if exscidata is not installed, if TRUE, install exscidata from github
if (!"exscidata" %in% installed.packages()) remotes::install_github("dhammarstrom/exscidata")

Load exscidata
library(exscidata)

Next we need to load the tidyverse package. This package in turn loads several packages that we will use when transforming data and making our figures. I will include the line of code that checks if the package is installed, if not, R will download and install it. We subsequently load the package using library.

Check if tidyverse is not installed, if TRUE, install remotes
if (!"tidyverse" %in% installed.packages()) install.packages(tidyverse)

library(tidyverse)

To follow along in this chapter you may want to open up a new R script (a text file with the file ending .R) and store this in a folder on your computer. In this file you can add code to incrementally create figures and store commands used for loading packages. You will most likely work interactively with your first graphs, this means that you will go back and forth between different sections in your script. Remember that you need to execute code in a specific sequence to recreate a graph from a script, this means you should also structure your code in that way.

We are now ready to explore the data set. But first we should talk about the main components of the ggplot2 system.

6.4 The ggplot2 system

When using the ggplot2 system we can think of the resulting graph as containing data that has been mapped to different coordinates, colours, shapes, sizes, and other attributes that determine what is being visualized. We are using different geometric representations of the data in the visualization.

When we map data in ggplot we use a specific function, aes() (short for aesthetic). We will use this inside the main engine, ggplot(). For this first simple example, we will create a data set by simulating some data1.

In the example below, we use rnorm() to simulate numbers from a normal distribution. Using the arguments n = 10, mean = 0, and sd = 1, we simulate the process of randomly picking ten numbers from a distribution with a mean of 0 and a standard deviation of 1. These numbers are stored in a data frame that is assigned to an object that we have named dat.

Set the seed for random generation of numbers
set.seed(100)

Store data in a data frame
dat <- data.frame(Xdata = rnorm(10, mean = 0, sd = 1),
 Ydata = rnorm(10, mean = 10, sd = 2))

The data set consists of two variables, we call them Xdata and Ydata. We will start the process of creating the graph by creating the canvas, and this basically sets the border of the figure we want to make. The ggplot() function takes the data set as its first argument, followed by the aes() function that maps data to coordinates and other attributes. In this case, we have mapped our data to the x- and y-coordinates of the figure.

ggplot(dat, aes(x = Xdata, y = Ydata))

[image:]

Figure 6.1: An empty ggplot canvas.

As you can see in Figure 6.1, the code above creates an “empty canvas” that has enough room to visualize our data. The x- and y-axes are adjusted to give room for graphical representations of the data. Next we need to add geometric shapes (geom for short). These are functions that we add to the plot using the + sign. These functions all start with geom_ and has and ending that describes the geometric shape, like for example point or line.

We will add geom_point() to our empty canvas as plotted in Figure 6.1. The geom_point function inherits the mapping from from ggplot(). Shapes, in this case points will be placed according to x- and y-coordinates specified in aes() used in the main ggplot function call. This means that we do not need to specify anything in geom_point at this stage.

ggplot(dat, aes(x = Xdata, y = Ydata)) + geom_point()

[image:]

Figure 6.2: A ggplot canvas with points added.

In Figure 6.2 we have added black points to each x- and y-coordinate representing x and y from our data set.

To extend the example we will add data to our data set. In the code below, we create a new variable in the data set using $ effectively giving us a new column in the data. We use rep("A", 5) to replicate the letter A five times and the same for B. The c() function combines the two in a single vector. We can use head(dat) to see what we accomplished with these operations. The head() function prints the first six rows from the data set.

dat$z <- c(rep("A", 5), rep("B", 5))

head(dat)

 Xdata Ydata z
1 -0.50219235 10.179772 A
2 0.13153117 10.192549 A
3 -0.07891709 9.596732 A
4 0.88678481 11.479681 A
5 0.11697127 10.246759 A
6 0.31863009 9.941367 B

We can see that we have an additional variable, z that contains the letters "A" and "B". This new variable can be used to add more information to the plot. Let’s say that we want to map the z variable to different colors. We do this by adding color = z to aes. This means that we want the z variable to determine colors.

ggplot(dat, aes(x = Xdata, y = Ydata, color = z)) + geom_point()

[image:]

Figure 6.3: A ggplot canvas with colored points added.

In Figure 6.3 we can see that different colors are used for the two letters "A" and "B". Other attributes can also be specified like shape, fill or size. The shape specifies the appearance of the points. When we use use data to map to shapes, ggplot2 will start from the standard shape.

[image:]

Figure 6.4: Shapes in R

Possible shapes in the standard framework in R are shown in Figure 6.4. Shapes 0 to 20 can change colors while shapes 21 to 25 may have different border colors but also different fill colors. We may use this information to change the shape, color and fill of our points. Let’s say that instead of colored points we want filled points. We would then change the color = z argument to fill = z and select a point shape that can be filled (shapes 21-25, see Figure 6.4. Notice in the code below that shape = 21 has been added to geom_point(). We have specified how points should be displayed.

ggplot(dat, aes(x = Xdata, y = Ydata, fill = z)) + geom_point(shape = 21)

[image:]

Figure 6.5: A ggplot canvas with filled points added.

Since shape is an attribute we can map data to it. If we want data to determine both shape and fill we could add this information in the aes() function by setting both shape = z and fill = z. We now have to specify what shapes ggplot should use in order to be sure we can combine both shapes and fill. We will use scale_fill_manual and scale_shape_manual to do this. These functions lets you specify different values for aesthetics. Notice that we removed shape = 21 from the geom_point() function, but we added size to increase the size of the points (see Figure 6.6).

ggplot(dat, aes(x = Xdata, y = Ydata, fill = z, shape = z)) +
 geom_point(size = 3) +
 scale_fill_manual(values = c("red", "green")) +
 scale_shape_manual(values = c(21, 23))

[image:]

Figure 6.6: Data mapped to fill and shape, and size specified manually to override the default.

6.5 Different geoms using real data

We have seen that the basic ggplot2 figure maps underlying data to coordinates and geometric representations, such as points. We will go further by using some real data. We will be using the cyclingstudy data set from the exscidata-package. We will start by loading the data and select a few columns that we are interested in.

By using data("cyclingstudy") we will load the data set that is part of the exscidata-package to our environment. By looking at the environment tab you can see that this operation adds a data set to the environment. It has 80 observations and 101 variables. Using the glimpse() function from dplyr (which is loaded by loading tidyverse) we will get an overview of all variables in the data set. I have omitted the output from the code below, feel free to run the code in a quarto- or rmarkdown-document on your own.

Load the data and have a first look
data("cyclingstudy")
glimpse(cyclingstudy)

We will store a selected set of variables in a new object for ease of use. We will call this object cycdat. We select variables using the function with the very suitable name select where the first argument specifies the data set, following arguments specifies what variables we want. Let’s say that we are interested in squat jump height. The exscidata package comes with descriptions of the data sets. By writing ?cyclingstudy in your console you will see the description of the data in your help tab. Squat jump is recorded as sj.max, we select this variable together with subject, group and timepoint to create a smaller data set.

Assign a selected set of variables to a smaller data set
cycdat <- select(cyclingstudy, subject, group, timepoint, sj.max)
Printing the data set
cycdat

A tibble: 80 × 4
 subject group timepoint sj.max
 <dbl> <chr> <chr> <dbl>
 1 1 INCR pre 31.0
 2 2 DECR pre 31.6
 3 3 INCR pre 26.8
 4 4 DECR pre 29.2
 5 5 DECR pre 31.2
 6 6 INCR pre 34.2
 7 7 MIX pre 30.1
 8 8 MIX pre 32.8
 9 9 MIX pre 22.7
10 10 INCR pre 29.7
ℹ 70 more rows

By printing the object we can see that we have a tibble of 80 rows and 4 columns. A tibble can to a large extent be regarded as a data frame, and we will use these words interchangeably. Tibbles are new in the sense that they are developed as part of the tidyverse (Wickham and Grolemund 2017) 2. Printing a tibble will display the first 10 rows as we can see from the resulting output.

6.5.1 A plot of values per group

Let’s say that we want to see how the values differs between groups. Box-plots are a good way to start as they will bring a standardized way of summarizing data. Box-plots can be plotted using the geom_boxplot function. Notice below that we put group on the x-axis (the first argument in the aes function) and sj.max on the y-axis. By doing so ggplot will make the x-axis discrete and the y-axis continuous.

Creating a box-plot of all values per group
ggplot(cycdat, aes(group, sj.max)) + geom_boxplot()

[image:]

Figure 6.7: Boxplot of all data per group from the cycling dataset.

We can add layers of more geoms to the same plot. We might want to add individual data points also. geom_jitter might be a good place to start. This geom is good as it can be plotted over a group variable and points gets “jittered” or spread so we avoid overlap.

Creating a boxplot of all values per group
ggplot(cycdat, aes(group, sj.max)) + geom_boxplot() + geom_jitter()

[image:]

Figure 6.8: Box-plot and jittered points of all data per group from the cycling dataset.

Notice that we get warnings saying that there are some data missing, these values are removed from the calculation of summary statistics in the box-plots and omitted from plotting of the points.

6.5.2 Data over time per group and individual

In the data set we have a time variable consisting of the labels “pre”, “meso1”, “meso2” and “meso3”. When we load the data into R we do so without providing information about the order of these labels. R will put them in alphabetical order when order is required (as in a figure). If we want to plot these data in the right order, we have to tell R that these data should have an order. We will convert the timepoint variable to a factor. Factors are variables that can contain more information than what is contained in each cell. Using the factor function we will set the order of the timepoint variable. We assign this transformation of the variable to its original place in the data frame.

cycdat$timepoint <- factor(cycdat$timepoint, levels = c("pre", "meso1", "meso2", "meso3"))

We are now ready to plot data over time, where the time variable is correctly ordered. Let’s use the box-plot again to plot all values over time.

Creating a boxplot of all values per time point
ggplot(cycdat, aes(timepoint, sj.max)) + geom_boxplot()

[image:]

Figure 6.9: Boxplot of all data per time-point from the cycling dataset.

We do not see any great tendencies in the whole data set. To further explore the data we might want to have different boxes per group per time. We can accomplish this by adding fill = group to our aes function.

Creating a boxplot of all values per group over time
ggplot(cycdat, aes(timepoint, sj.max, fill = group)) + geom_boxplot()

[image:]

Figure 6.10: Boxplot of all data per time-point and group from the cycling dataset.

This is possible because geom_boxplots can be filled. The same separation of groups would have been accomplished using color = group, however, then the boxes would get different border colors instead. You might have noticed that the box-plots do not contain all the data, a few data points are outside 1.5×IQR1.5 \times IQR (interquartile range). This, by standard definitions, defines the data point as an “outlier”.

As mentioned above, box-plots does some summarizing and not all data is shown. To explore further we might want to track every participant. To do this we have to tell ggplot how to group the data. In aes() the group argument let’s you connect lines based on some grouping variable, in our case it will be subject. We will use a line to connect each participants score over time. Using color = group will additionally give every line a different color depending on which group it belongs to.

Creating a line plot of all values per participant over time, color per group

ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
geom_line()

[image:]

Figure 6.11: Figure with lines corresponding to indivudal values per participant.

In Figure 6.11, each line represents a participant, different colors represents different groups.

6.5.3 Titles and labels

Often we need to add information to the plot to better communicate its message. Such information could be appropriate titles on axes and legends and extra text needed to explain aspects of the plot. Using the labs() function we can add information that will replace variable names that are being used for all variables that have been mapped in the figure. In the figure below we will start by adding better axis titles. This information goes into x and y in labs() which simply changes the titles of the x- and y-axis.

Creating a line plot of all values per participant over time, color per group,
adding axis labels
ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
 geom_line() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)")

[image:]

Figure 6.12: Figure with updated axis labels

The resulting Figure 6.12 now have better titles for each axis. Notice in the code above that titles needs to be specified with quotation marks. This is a tricky aspect of R, if we would have omitted the quotation marks we would have told R to look for objects by the name of e.g. Time-point, and this would actually mean that we tried to subtract time from point since - is interpreted as a minus sign.

We might want to add information to the legend also. Since we specified color = group in the aes() function, the same can be manipulated in labs. Lets just add a capital G.

ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
 geom_line() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)",
 color = "Group")

[image:]

Figure 6.13: Additional labels

We still have the original labels for the time variable. Remember that we used the factor function above to set the order of the labels. Actually we specified the “levels” of the factor. We can use the same function to add better “labels”. In the code below, I will first change the variable in the data set and then use the exact same code for the plot.

cycdat$timepoint <- factor(cycdat$timepoint, levels = c("pre", "meso1", "meso2", "meso3"),
 labels = c("Pre-training", "Meso-cycle 1", "Meso-cycle 2", "Meso-cycle 3"))

ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
 geom_line() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)",
 color = "Group")

[image:]

Figure 6.14: Changing labels by changing a factor variable prior to plotting

The same goes for the group variable. You can try to change the levels and labels of the grouping variable to make it more descriptive. You can type ?cyclingstudy in your console to read about the group variable and then use this information to write better labels using the factor function. In the factor function, the first argument is the variable you want to use as basis of your new factor, the second argument you need to specify is levels which sets the order and lastly you will need to set the labels for each level using labels =. If you write ?factor in your console you will get the help pages for the factor function.

A possible solution
Change the grouping variable
cycdat$group <- factor(cycdat$group, levels = c("DECR", "INCR", "MIX"),
 labels = c("Decreased\nintensity",
 "Increased\nintensity",
 "Mixed\nintensity"))

Plotting the data as before with the new information added
ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
 geom_line() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)",
 color = "Periodization strategy")

Note: Adding \n in the the text string above breaks the line to get two rows.

6.5.4 Annotations

Annotation may become handy when you want to add elements to the graph that is not in the data set. Using ggplot2, annotations are added using the annotate() function. This function first needs to be specified with a geom, these are commonly text or lines or segments. In the code chunk below are several examples of annotations. First I save the plot as an object called myplot and then add different annotations to it.

myplot <- ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
 geom_line() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)",
 color = "Periodization strategy")

A text annotation
myplot + annotate("text", x = 1, y = 37, label = "This is an annotation")

A line/segment
myplot + annotate("segment", x = 1, xend = 3, y = 25, yend = 35, colour = "red", size = 4)

You can copy the code and run it yourself to see the results. annotate is documented here but documentation can also be accessed by typing ?annotate in your console. Try to read the documentation and add a transparent rectangle to a previous plot.

A possible solution
Change the grouping variable
cycdat$group <- factor(cycdat$group, levels = c("DECR", "INCR", "MIX"),
 labels = c("Decreased\nintensity",
 "Increased\nintensity",
 "Mixed\nintensity"))

Plotting the data as before with the new information added
ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
 geom_line() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)",
 color = "Periodization strategy") +
 # A rectangular annotation (alpha = 0.4 makes the rectangle transparent)
 annotate("rect", xmin = 1, xmax = 2, ymin = 30, ymax = 35, alpha = 0.4)

Note: Adding \n in the the text string breaks the line to get two rows.

6.6 Themes

Themes in ggplot2 can be used to change everything else about the plot concerning text, colors etc. ggplot2 has some built in themes that are easily activated by adding them to the plot. For example the theme_bw() function will change the theme to a black and white one as in the figure below.

ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
 geom_line() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)",
 color = "Group") +
 theme_bw() # Adding a pre-specified theme

[image:]

Figure 6.15: A figure using the black and white theme from theme_bw.

A collection of built in themes are documented here. Individual components of the theme can also be changed using the theme() function. There is a long list of theme components that can be changed using this function. The list can be found here.

If we put the theme function last in the ggplot call we will modify the existing theme. Let’s say that we want to change the color of the text on the x axis.

ggplot(cycdat, aes(timepoint, sj.max, color = group, group = subject)) +
 geom_line() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)",
 color = "Group") +
 theme_bw() +
 theme(axis.text.x = element_text(color = "steelblue", size = 12, face = "bold"))

[image:]

Figure 6.16: A figure using the black and white theme from theme_bw, with modifications

The component axis.text.x can be modified using a function that changes appearance of text components, namely element_text. Similarly, other components are changed with specific functions for lines and rectangular shapes (see the help pages for theme).

6.7 Test your understandning

In this section you can try to implement what we have discussed above. An example solution exists below each figure by press of button.

In Figure 6.17, I have used the VO2max data from the cyclingstudy data set. I have made changes to the time variable (timepoint) to make the labels better. I have added a title to the figure and changed the appearance of the text. I will use an extra package called (ggtext)[https://wilkelab.org/ggtext/index.html] to make it possible to use markdown syntax in axis labels. In order to use ggtext you have to install it from CRAN.

[image:]

Figure 6.17: Example figure 1

A possible solution
Load the package ggtext to make markdown avalable in axis labels.
library(ggtext)

For ease of use I save a smaller dataset in a new object
cycdat <- select(cyclingstudy, subject, timepoint, VO2.max)

Change the labels of the time variable
cycdat$timepoint <- factor(cycdat$timepoint, levels = c("pre", "meso1", "meso2", "meso3"),
 labels = c("Pre-training", "Meso-cycle 1", "Meso-cycle 2", "Meso-cycle 3"))

create the basic plot

ggplot(data = cycdat, aes(timepoint, VO2.max, group = subject)) +
 # Add lines to connect dots. Putting the lines first and plotting points on top
 geom_line() +
 # Add points foe each participant/time
 geom_point(size = 3, fill = "lightblue", shape = 21) +

 # Adding correct axis titles and a figure title
 labs(x = "Time-point",
 y = "VO_{2max} (ml min⁻¹)",
 title = "Maximal aerobic power in response to systematic training in trained cyclists") +

 # Changing the text rendering using element_markdown from the ggtext package.
 theme(axis.title.y = element_markdown(size = 12))

1. When you simulate data in R, you can tell R what should be the starting point in the random number generator. Using set.seed(100), we can recreate the same numbers from our “number generator” later.

2. See Chapter 10 in R for data science (2 edition)

7 Wrangling data to create your first table

7.1 Introduction

We can use tables to communicate a lot of information in a compact form while maintaining precision. This advantage is why creating tables is essential for effectively communicating data. We can easily create tables programmatically as part of an R markdown or quarto document. R has many “table generator” packages that translate your draft table to an output format of your choice. A great format to start authoring an analysis in is HTML; however, most “table generators” need to know your output format to be properly formatted and work in the output format. Below we will introduce a new package for the purpose of creating tables. This package, gt has the advantage that it does not require the user to change code when we switch to another output format. The gt package can create tables in HTML, PDF and word format.

Since we are concerned with reproducibility, we would like to avoid copy-and-paste operations. The strength of writing reports in R markdown or quarto is the ability to combine data, code, and text to produce a formatted output programmatically. Therefore, We will choose a table generator that allows for consistently selecting multiple formats. One such table generator is part of the gt package.

As mentioned previously, authoring in R markdown and quarto makes little difference. However, we will now focus on the more modern file format, quarto, knowing that examples and tutorials written in R markdown will translate to quarto with few problems.

The basic workflow of creating a table in R markdown or quarto is to transform the data into a nice format and then get this underlying data into the table generator. The table generator is written in a code chunk, and upon rendering the source file, the table generator will create, for example, HTML output. In this chapter, we will introduce some data-wrangling tools since the table we will produce consists of summarized data. The functions we introduce are found in the packages dplyr and tidyr. These packages are loaded as part of the tidyverse package.

7.1.1 Resources

All tidyversepackages are well documented and generally well represented in help forums. Google is your friend when looking for help.

The gt package is now a mature package for generating tables in R. This chapter is written on the basis of this package. If you are looking for alternatives, the kable function from the knitr package is described in a newly developed book, available online called the R Markdown Cookbook. The package, kableExtra comes with excellent vignettes for both html and pdf outputs. kableExtra provides extra functions to customize your basic knitr table. Note that kabale and kableExtra will only produce output in HTML and pdf-formats. Another package the can create tables in HTML, pdf, and word formats is the flextable package

7.2 Making “Table 1”

The first table in many reports in sport and exercise studies is the “Participant characteristics” table. This first table summarizes background information on the participants. We will try to create this table based on data from (Hammarström et al. 2020). These data can be found in the exscidata package. To load the data and other required packages run the following code.

library(tidyverse) # for data wrangling
library(gt) # for creating tables
library(exscidata) # the dxadata

The end result of this exercise can be found below in Table 7.1. This summary table contains the average and standard deviation per group for the variables age, body mass and stature (height) and body fat as a percentage of the body mass. This table is a reproduction of the first part of Table 1 from (Hammarström et al. 2020).

Table 7.1: Participant characteristics

	
	Female
	Male

	Included
	Excluded
	Included
	Excluded

	N
	18
	4
	16
	3

	Age (years)
	22 (1.3)
	22.9 (1.6)
	23.6 (4.1)
	24.3 (1.5)

	Mass (kg)
	64.4 (10)
	64.6 (9.7)
	75.8 (11)
	88.2 (22)

	Stature (cm)
	168 (6.9)
	166 (7.6)
	183 (5.9)
	189 (4.6)

	Body fat (%)
	34.1 (5.6)
	28.8 (8.7)
	20.4 (6)
	24.3 (15)

	Values are mean and (SD)

We have to make several operations to re-create this table. First we can select the columns we want to work with further from the data set that also contains a lot of other variables. Let us start by looking at the full data set. Below we use the function glmipse from the dplyr package (which is loaded with tidyverse).

data("dxadata")

glimpse(dxadata)

Rows: 80
Columns: 59
$ participant <chr> "FP28", "FP40", "FP21", "FP34", "FP23", "FP26", "FP36…
$ time <chr> "pre", "pre", "pre", "pre", "pre", "pre", "pre", "pre…
$ multiple <chr> "L", "R", "R", "R", "R", "R", "L", "R", "R", "L", "L"…
$ single <chr> "R", "L", "L", "L", "L", "L", "R", "L", "L", "R", "R"…
$ sex <chr> "female", "female", "male", "female", "male", "female…
$ include <chr> "incl", "incl", "incl", "incl", "incl", "excl", "incl…
$ age <dbl> 24.5, 22.1, 26.8, 23.1, 24.8, 24.2, 20.5, 20.6, 37.4,…
$ height <dbl> 170.0, 175.0, 184.0, 164.0, 176.5, 163.0, 158.0, 181.…
$ weight <dbl> 66.5, 64.0, 85.0, 53.0, 68.5, 56.0, 60.5, 83.5, 65.0,…
$ BMD.head <dbl> 2.477, 1.916, 2.306, 2.163, 2.108, 2.866, 1.849, 2.21…
$ BMD.arms <dbl> 0.952, 0.815, 0.980, 0.876, 0.917, 0.973, 0.871, 0.91…
$ BMD.legs <dbl> 1.430, 1.218, 1.598, 1.256, 1.402, 1.488, 1.372, 1.42…
$ BMD.body <dbl> 1.044, 0.860, 1.060, 0.842, 0.925, 0.984, 0.923, 1.01…
$ BMD.ribs <dbl> 0.770, 0.630, 0.765, 0.636, 0.721, 0.737, 0.648, 0.70…
$ BMD.pelvis <dbl> 1.252, 1.078, 1.314, 1.044, 1.154, 1.221, 1.194, 1.32…
$ BMD.spine <dbl> 1.316, 0.979, 1.293, 0.899, 1.047, 1.089, 1.006, 1.14…
$ BMD.whole <dbl> 1.268, 1.082, 1.325, 1.119, 1.181, 1.350, 1.166, 1.24…
$ fat.left_arm <dbl> 1168, 715, 871, 610, 788, 372, 932, 1312, 388, 668, 5…
$ fat.left_leg <dbl> 4469, 4696, 3467, 3023, 3088, 2100, 4674, 5435, 1873,…
$ fat.left_body <dbl> 6280, 4061, 7740, 3638, 6018, 2328, 4896, 9352, 2921,…
$ fat.left_whole <dbl> 12365, 9846, 12518, 7565, 10259, 5048, 10736, 16499, …
$ fat.right_arm <dbl> 1205, 769, 871, 610, 741, 374, 940, 1292, 413, 716, 5…
$ fat.right_leg <dbl> 4497, 4900, 3444, 3017, 3254, 2082, 4756, 5455, 1782,…
$ fat.right_body <dbl> 6082, 3923, 8172, 3602, 5699, 2144, 4705, 8674, 2640,…
$ fat.right_whole <dbl> 12102, 9862, 12856, 7479, 10020, 4821, 10806, 15876, …
$ fat.arms <dbl> 2373, 1484, 1742, 1220, 1529, 747, 1872, 2604, 802, 1…
$ fat.legs <dbl> 8965, 9596, 6911, 6040, 6342, 4182, 9430, 10890, 3655…
$ fat.body <dbl> 12362, 7984, 15912, 7239, 11717, 4472, 9601, 18026, 5…
$ fat.android <dbl> 1880, 963, 2460, 1203, 1933, 527, 1663, 3183, 1240, 1…
$ fat.gynoid <dbl> 5064, 5032, 4779, 3739, 4087, 2740, 5217, 6278, 2309,…
$ fat.whole <dbl> 24467, 19708, 25374, 15044, 20278, 9869, 21542, 32375…
$ lean.left_arm <dbl> 1987, 1931, 2884, 1753, 2652, 2425, 1913, 2266, 3066,…
$ lean.left_leg <dbl> 7059, 7190, 10281, 6014, 8242, 7903, 6829, 8889, 9664…
$ lean.left_body <dbl> 9516, 10693, 13847, 9736, 11387, 10573, 8954, 11482, …
$ lean.left_whole <dbl> 20305, 21778, 29332, 19143, 24185, 22946, 18809, 2431…
$ lean.right_arm <dbl> 2049, 2081, 2888, 1754, 2487, 2439, 1930, 2236, 3253,…
$ lean.right_leg <dbl> 7104, 7506, 10200, 6009, 8685, 7841, 6950, 8923, 9198…
$ lean.right_body <dbl> 9199, 10304, 14593, 9636, 10779, 9733, 8602, 10672, 1…
$ lean.right_whole <dbl> 19605, 21310, 29643, 18792, 23653, 21837, 19407, 2372…
$ lean.arms <dbl> 4036, 4012, 5773, 3508, 5139, 4864, 3843, 4501, 6319,…
$ lean.legs <dbl> 14163, 14696, 20482, 12023, 16928, 15744, 13779, 1781…
$ lean.body <dbl> 18715, 20998, 28440, 19372, 22166, 20306, 17556, 2215…
$ lean.android <dbl> 2669, 2782, 3810, 2455, 2904, 2656, 2297, 3094, 3344,…
$ lean.gynoid <dbl> 6219, 7209, 10233, 5866, 7525, 5970, 5825, 8175, 7760…
$ lean.whole <dbl> 39910, 43088, 58976, 37934, 47837, 44783, 38216, 4804…
$ BMC.left_arm <dbl> 181, 138, 204, 144, 180, 173, 140, 173, 220, 226, 225…
$ BMC.left_leg <dbl> 567, 508, 728, 441, 562, 574, 482, 631, 633, 630, 672…
$ BMC.left_body <dbl> 622, 414, 696, 367, 526, 465, 370, 629, 473, 629, 509…
$ BMC.left_whole <dbl> 1680, 1321, 1945, 1201, 1527, 1580, 1131, 1688, 1544,…
$ BMC.right_arm <dbl> 198, 150, 210, 142, 176, 183, 140, 176, 224, 251, 226…
$ BMC.right_leg <dbl> 574, 514, 739, 431, 552, 565, 491, 641, 622, 636, 690…
$ BMC.right_body <dbl> 592, 428, 730, 351, 502, 409, 358, 582, 420, 616, 483…
$ BMC.right_whole <dbl> 1582, 1288, 1958, 1130, 1451, 1466, 1229, 1668, 1478,…
$ BMC.arms <dbl> 379, 288, 414, 285, 356, 357, 280, 348, 444, 478, 451…
$ BMC.legs <dbl> 1142, 1022, 1467, 872, 1115, 1139, 974, 1272, 1255, 1…
$ BMC.body <dbl> 1214, 842, 1426, 718, 1028, 874, 728, 1211, 893, 1245…
$ BMC.android <dbl> 80, 57, 90, 44, 56, 54, 43, 77, 52, 72, 59, 60, 65, 5…
$ BMC.gynoid <dbl> 314, 285, 427, 245, 299, 262, 241, 379, 335, 378, 332…
$ BMC.whole <dbl> 3261, 2609, 3903, 2331, 2978, 3046, 2360, 3356, 3022,…

We can see that we got 80 rows and 59 columns in the data set. The columns of interest to us are:

	participant

	time

	sex

	include

	age

	height

	weight

	fat.whole

For a full description of the data set, you can type ?dxadata in your console. The participant column is good to have to keep track of the data set in the beginning. time is needed to remove some observation that are not needed. This pre-training table only sums up information from before the intervention starts. sex is a grouping variable together with include, Table 1 in (Hammarström et al. 2020) uses Sex and Inclusion in data analysis as grouping for descriptive data. The other variables are used to describe the data sample.

7.2.1 The pipe operator and select

As mentioned above, we will start by selecting the variables we want to work further with. Using the select function from dplyr we can select columns that we need. In the code below I will use select as part of a “pipe”. Think of the pipe as doing operations in sequel. Each time you use the pipe operator (%>%) you say “then do”. The code below translates to:

	Take the data set dxadata, then do

	select() the following variables, then do

	print()

print, is a function that outputs the results of the operations. In each new function of a pipe, the data that we take with us from the above line ends up as the first argument. A representation of this behavior can be expressed as:

DATA %>% FUNCTION(DATA, ARGUMENTS) %>% FUNCTION(DATA, ARGUMENTS) %>% FUNCTION(DATA)

We do not need to type the data part, instead the pipe operator (%>%) gathers the data from each step and puts it in the subsequent function.

Copy the code below to your own quarto document and run it. When using quarto you might want to set “Chunk output in console” in the settings menu. In my experience, this makes developing code a bit faster.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole
 print() # print the output

Notice that I have added short comments after each line to make it clear what I want to accomplish. We will build further on the above code, and this is a common workflow. Using pipes, it is easy to extend the code by adding lines doing certain operations, one at the time. Notice also that the select function uses a list of variable names with include:weight being short for “take all variables from include to weight”.

7.2.2 Filter observations

The next step will be to filter observations. We need to remove the observations that comes from the post-intervention tests. The time variable contains to values pre and post to remove post-values we need to tell R to remove all observations (rows) containing post. We will use the filter function from dplyr. This will be our first experience with logical operators. Let’s try out two alternatives, copy the code to your console to see the results.

Alternative 1:
dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter away all observation with "post"
 filter(time != "post") %>%

 print() # print the output

Alternative 2:
dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 print() # print the output

The above code should give the same output. The operator != says “not equal to”, the operator == says “equal to”. Notice that R uses two equal signs to say equal to. A single equal sign is used as an assignment operator in R.

7.2.3 Create or change variables

The next problem for us is that we need to manipulate or combine information from two variables in order to calculate body fat percentage. The formula that we will use is simply expressing body fat as a percentage of the body weight.

Body fat (%)=Body fat (g)/1000Body weight (kg)×100\text{Body fat (\%)} = \frac{\text{Body fat (g)}/1000}{\text{Body weight (kg)}} \times 100 By using the mutate function we can add or manipulate existing variables in a pipe. Mutate takes as arguments a list of new variables:

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%
 print() # print the output

In the code above, we overwrite the variable fat.whole with the re-calculated variable.

7.2.4 Grouped operations and summary statistics

In a pipe, we can group the data set giving us opportunities to calculate summary statistics over one or several grouping variables. In Table 1 in (Hammarström et al. 2020), include and sex are the two grouping variables. Using the group_by() function from dplyr sets the grouping of the data frame. If we use functions that summarizes data, such summaries will be per group. In Table 1 in (Hammarström et al. 2020) the number of participants in each group are specified. We can use the function n() to calculate the number of observations per group in a mutate call.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 print() # print the output

The new variable n now contains the number of observations in each group. For now we can regard this as a new variable. Each participant belongs to a specified group, and this specific group has n number of members.

We can now go further and use the summarise function. Instead of adding variables to the existing data set, summarize reduces the data set using some summarizing function, such as mean() or sd(). These summary statistics are what we are looking for in our data set. Example of other summarizing functions for descriptive data are min() and max() for the minimum and maximum.

We can use the summarise() function to calculate the mean and standard deviation for the weight variable.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Summarise weight
 summarise(weight.m = mean(weight),
 weight.s = sd(weight)) %>%

 print() # print the output

Try out the code in your own quarto document. The above example gives us what we want, however, it means that we need to type a lot. Instead of needing to make a summary for each variable, we can combine the variables in a long format. To get to the long format we will use the pivot_longer() function. This function gathers several variables into two columns, one with the variables names as values and a second column with each value from the original variables. In our case we want to gather the variables age, height, weight, fat.whole and n. I will call the new variables that we create variable and value.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 print()

The cols = age:n part of pivot_longer specifies what columns to gather. The data set is still grouped by include and sex. We may now proceed by summarizing over these groups, however, we need to add another group to specify that we want different values per variable. To do this we re-specify the grouping. After this we add the summarise function.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 # Create a new grouping, adding variable
 group_by(include, sex, variable) %>%
 # Summarize in two new variables m for mean and s for SD
 summarise(m = mean(value),
 s = sd(value)) %>%
 print()

If you run the above code you will notice that the the standard deviation of each variable is larger than zero except for n which has no variability. This is because we created it per group and simply calculated it as the sum of observations.

Take a look at Table 1 in (Hammarström et al. 2020). The format of the descriptive statistics are mean (SD), this is a preferred way of reporting these statistics. In order to achieve this we need to “manually” convert the numbers. In the example below, I will start by making a new variable by simply pasting the numbers together. I will also add the parentheses.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 # Create a new grouping, adding variable
 group_by(include, sex, variable) %>%
 # Summarize in two new variables m for mean and s for SD
 summarise(m = mean(value),
 s = sd(value)) %>%
 # Add descriptive statistics together for nice formatting
 mutate(ms = paste0(m, " (", s, ")"))
 print()

In mutate(ms = paste0(m, " (", s, ")")), the paste0 function simply glues components together to form a string of text. First, the vector of means are being used, then we add a parenthesis, followed by the SD and finally a parenthesis.

If you run the above code you will notice that you end up with numbers looking like this:

167.666666666667 (6.86851298231541)

This is neither good or good looking. We have to take care of the decimal places. There are a number of ways to do this but in this case the function signif seems to make the situation better. signif rounds to significant digits. This means that we will get different rounding depending on the “size” of the value. I find signif(m, 3) to be a good starting point.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 # Create a new grouping, adding variable
 group_by(include, sex, variable) %>%
 # Summarize in two new variables m for mean and s for SD
 summarise(m = mean(value),
 s = sd(value)) %>%
 # Add descriptive statistics together for nice formatting
 mutate(ms = paste0(signif(m, 3), # Use signif to round to significant numbers
 " (",
 signif(s, 3),
 ")")) %>%
 print()

Things are starting to look good. Run the code, what do you think. A problem with the above is that we do not want any variability in the n variable. So if the variable is n we do not want that kind of formatting. It is time to add a conditional statement. In dplyr there are easy-to-use if/else functions. The function if_else sets a condition, if this is met then we can decide what to do, and likewise decide what to do if it is not met.

This looks something like this inside a dplyr pipe:

... %>%
 if_else(IF_THIS_IS_TRUE, THE_DO_THIS, OTHERWISE_DO_THIS) %>%
 print()

If variable is n, then we only want to display m otherwise we want the full code as described above: paste0(signif(m, 3), " (", signif(s, 3), ")"). We add this to the code:

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 # Create a new grouping, adding variable
 group_by(include, sex, variable) %>%
 # Summarize in two new variables m for mean and s for SD
 summarise(m = mean(value),
 s = sd(value)) %>%
 # Add descriptive statistics together for nice formatting
 mutate(ms = if_else(variable == "n", # If the variable is n
 as.character(m), # the only display the mean, otherwise:
 paste0(signif(m, 3), # Use signif to round to significant numbers
 " (",
 signif(s, 3),
 ")"))) %>%
 print()

The as.character part is needed because the output of if_else must be the same regardless of what the outcome of the test is.

We are getting close to something!

The next step is to remove variables that we do not longer need. The select function will help us with that. we can remove m and s by select(-m, -s), the minus sign tells R to remove them from the list of variables in the data set. We can then combine the grouping variables into a include_sex variable. Similarly to what we did above, we can simply paste them together. Now we will use the paste (function instead of paste0). In paste we specify a separator, maybe _ is a nice alternative. Selecting away the individual variables from the new combined one leaves us with this code and data set.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 # Create a new grouping, adding variable
 group_by(include, sex, variable) %>%
 # Summarize in two new variables m for mean and s for SD
 summarise(m = mean(value),
 s = sd(value)) %>%
 # Add descriptive statistics together for nice formatting
 mutate(ms = if_else(variable == "n", # If the variable is n
 as.character(m), # the only display the mean, otherwise:
 paste0(signif(m, 3), # Use signif to round to significant numbers
 " (",
 signif(s, 3),
 ")")),
 # Doing a new grouping variable
 include_sex = paste(include, sex, sep = "_")) %>%
 # removing unnecessary variables after ungrouping
 ungroup() %>%
 select(-sex, -include, -m, -s) %>%
 print()

If ungroup is not used, we cannot select away variables since they are used to group the data set. We will now perform the last operations before we can make it a table. To make it formatted as in Table 1 in (Hammarström et al. 2020), we can make the present data set wider. Each group as its own column in addition to the variable name column. We will use the opposite function to pivot_longer, namely pivot_wider1. pivot_wider takes a variable or “key” column and a “values” column and divide the values based on the “key”.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 # Create a new grouping, adding variable
 group_by(include, sex, variable) %>%
 # Summarize in two new variables m for mean and s for SD
 summarise(m = mean(value),
 s = sd(value)) %>%
 # Add descriptive statistics together for nice formatting
 mutate(ms = if_else(variable == "n", # If the variable is n
 as.character(m), # the only display the mean, otherwise:
 paste0(signif(m, 3), # Use signif to round to significant numbers
 " (",
 signif(s, 3),
 ")")),
 # Doing a new grouping variable
 include_sex = paste(include, sex, sep = "_")) %>%
 # removing unnecessary variables after ungrouping
 ungroup() %>%
 select(-sex, -include, -m, -s) %>%
 # pivot wider to match the desired data
 pivot_wider(names_from = include_sex,
 values_from = ms) %>%
 print()

A final step is to format the variable variable(!). The easiest is to make it a factor variable with specified levels and names. In the factor function we use levels = c("n", "age", "weight", "height", "fat.whole") to specify the order of values contained in the variable. Using labels = c("N", "Age (years)", "Mass (kg)", "Stature (cm)", "Body fat (%)", we set corresponding labels on each level. After we have added this information to the variable we can use arrange to sort the data set. arrange will sort the data set based on the order we have given to the variable. select will help you sort the columns to match what we want.

#| eval: false

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 # Create a new grouping, adding variable
 group_by(include, sex, variable) %>%
 # Summarize in two new variables m for mean and s for SD
 summarise(m = mean(value),
 s = sd(value)) %>%
 # Add descriptive statistics together for nice formatting
 mutate(ms = if_else(variable == "n", # If the variable is n
 as.character(m), # the only display the mean, otherwise:
 paste0(signif(m, 3), # Use signif to round to significant numbers
 " (",
 signif(s, 3),
 ")")),
 # Doing a new grouping variable
 include_sex = paste(include, sex, sep = "_")) %>%
 # removing unnecessary variables after ungrouping
 ungroup() %>%
 select(-sex, -include, -m, -s) %>%
 # pivot wider to match the desired data
 pivot_wider(names_from = include_sex,
 values_from = ms) %>%
 mutate(variable = factor(variable, levels = c("n", "age", "weight", "height", "fat.whole"),
 labels = c("N", "Age (years)", "Mass (kg)",
 "Stature (cm)", "Body fat (%)"))) %>%
 arrange(variable) %>%
 print()

`summarise()` has grouped output by 'include', 'sex'. You can override using
the `.groups` argument.

A tibble: 5 × 5
 variable excl_female excl_male incl_female incl_male
 <fct> <chr> <chr> <chr> <chr>
1 N 4 3 18 16
2 Age (years) 22.9 (1.57) 24.3 (1.46) 22 (1.25) 23.6 (4.11)
3 Mass (kg) 64.6 (9.71) 88.2 (22.4) 64.4 (10.4) 75.8 (10.7)
4 Stature (cm) 166 (7.59) 189 (4.58) 168 (6.87) 183 (5.88)
5 Body fat (%) 28.8 (8.69) 24.3 (15.3) 34.1 (5.64) 20.4 (5.99)

7.2.5 Starting the table generator - The gt() function.

The next step is to “pipe” everything into the table generator.

dxadata %>% # take the dxadata data set
 select(participant, time, sex, include:weight, fat.whole) %>%
 # select participant, time, sex, include to height and fat.whole

 # Filter to keep all observations with pre
 filter(time == "pre") %>%

 # Calculate body fat
 # fat.whole in grams, needs to be divided by 1000 to express as kg
 # Multiply by 100 to get percentage
 mutate(fat.whole = ((fat.whole/1000) / weight) * 100) %>%

 # Group the data frame and add a variable specifying the number of observations per group
 group_by(include, sex) %>%
 mutate(n = n()) %>%
 # Collect all variables for convenient summarizing
 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 # Create a new grouping, adding variable
 group_by(include, sex, variable) %>%
 # Summarize in two new variables m for mean and s for SD
 summarise(m = mean(value),
 s = sd(value)) %>%
 # Add descriptive statistics together for nice formatting
 mutate(ms = if_else(variable == "n", # If the variable is n
 as.character(m), # the only display the mean, otherwise:
 paste0(signif(m, 3), # Use signif to round to significant numbers
 " (",
 signif(s, 3),
 ")")),
 # Doing a new grouping variable
 include_sex = paste(include, sex, sep = "_")) %>%
 # removing unnecessary variables after ungrouping
 ungroup() %>%
 select(-sex, -include, -m, -s) %>%
 # pivot wider to match the desired data
 pivot_wider(names_from = include_sex,
 values_from = ms) %>%
 mutate(variable = factor(variable, levels = c("n", "age", "weight", "height", "fat.whole"),
 labels = c("N", "Age (years)", "Mass (kg)",
 "Stature (cm)", "Body fat (%)"))) %>%
 arrange(variable) %>%

 # Piping into the table generator (gt)

 gt()

As per our strategy to first summarize and set up the data table, we already have nice first draft. However, we need to format variable names and add column labels. We can also add a footnote.

The gt package has several functions for manipulating the raw tables created with the gt() function. The gt package also use a consistent vocabulary for tables as seen in [this figure]((https://gt.rstudio.com/reference/figures/gt_parts_of_a_table.svg).

First, using tab_footnote() we can add the footnote indicating that “Values are mean and (SD)”. We do this by piping the whole table, created with gt() into tab_footnote(footnote = "Values are mean and (SD)"). We have two columns representing females and two representing males, these can be more clearly separated by adding a spanner column label. This column label adds rows to the table. Using tab_spanner(label = "Female", columns = c("female_incl", "female_excl")) we add “Female” above the two columns representing females. We can do the same for males. Using cols_label() we specify new column names to match what we want. The resulting full code can be seen below.

dxadata %>%
 select(participant, time, sex, include:weight, fat.whole) %>%
 mutate(fat.whole = ((fat.whole / 1000) / weight) * 100) %>%
 filter(time == "pre") %>%
 group_by(sex, include) %>%
 mutate(n = n()) %>%

 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 group_by(sex, include, variable) %>%
 summarise(m = mean(value),
 s = sd(value)) %>%
 ungroup() %>%
 mutate(m = signif(m, digits = 3),
 s = signif(s, digits = 2),
 ms = if_else(variable == "n", as.character(m), paste0(m, " (", s, ")")),
 sex_incl = paste(sex, include, sep = "_")) %>%
 dplyr::select(-m, -s, - sex, -include) %>%

 pivot_wider(names_from = sex_incl,
 values_from = ms) %>%
 select(variable, female_incl, female_excl, male_incl, male_excl) %>%
 mutate(variable = factor(variable, levels = c("n", "age", "weight", "height", "fat.whole"),
 labels = c("N", "Age (years)", "Mass (kg)",
 "Stature (cm)", "Body fat (%)"))) %>%
 arrange(variable) %>%

 gt() %>%
 tab_footnote(footnote = "Values are mean and (SD)") %>%
 tab_spanner(label = "Female", columns = c("female_incl", "female_excl")) %>%
 tab_spanner(label = "Male", columns = c("male_incl", "male_excl")) %>%
 cols_label(variable = " ",
 female_incl = "Included",
 female_excl = "Excluded",
 male_incl = "Included",
 male_excl = "Excluded")

7.2.6 Working with tables in quarto

If we where to use this table in a report created with quarto we would like to be able to cross-reference it. This will work if we add information to the code chunk where the table is created. More specifically we need to set a table label and a table caption. Quarto has built in support for cross referencing figures and tables. Adding chunk options that sets a label and table caption will make it possible to reference the table. Note that the label must start with “tbl-” to make quarto identify it as a table.

```{r}
#| label: tbl-participant-characteristics
#| tbl-cap: "Participant characteristics"

dxadata %>%
select(participant, time, sex, include:weight, fat.whole) %>%
mutate(fat.whole = ((fat.whole / 1000) / weight) * 100) %>%
filter(time == "pre") %>%
group_by(sex, include) %>%
mutate(n = n()) %>%

pivot_longer(names_to =  "variable", 
             values_to = "value", 
             cols = age:n) %>%
group_by(sex, include, variable) %>%
summarise(m = mean(value), 
          s = sd(value)) %>%
ungroup() %>%
mutate(m = signif(m, digits = 3), 
       s = signif(s, digits = 2), 
       ms = if_else(variable == "n", as.character(m), paste0(m, " (", s, ")")), 
       sex_incl = paste(sex, include, sep = "_")) %>%
dplyr::select(-m, -s, - sex, -include) %>%

pivot_wider(names_from = sex_incl, 
            values_from = ms) %>%
select(variable, female_incl, female_excl, male_incl, male_excl) %>%
mutate(variable = factor(variable, levels = c("n", "age", "weight", "height", "fat.whole"), 
                         labels = c("N", "Age (years)", "Mass (kg)", 
                                    "Stature (cm)", "Body fat (%)"))) %>%
arrange(variable) %>%

gt() %>%
tab_footnote(footnote = "Values are mean and (SD)") %>%
tab_spanner(label = "Female", columns = c("female_incl", "female_excl")) %>%
tab_spanner(label = "Male", columns = c("male_incl", "male_excl")) %>%
cols_label(variable = " ", 
           female_incl = "Included", 
           female_excl = "Excluded", 
           male_incl = "Included", 
           male_excl = "Excluded")
           
```


The above code will produce referable table, as seen in Table 7.2!

 dxadata %>%
 select(participant, time, sex, include:weight, fat.whole) %>%
 mutate(fat.whole = ((fat.whole / 1000) / weight) * 100) %>%
 filter(time == "pre") %>%
 group_by(sex, include) %>%
 mutate(n = n()) %>%

 pivot_longer(names_to = "variable",
 values_to = "value",
 cols = age:n) %>%
 group_by(sex, include, variable) %>%
 summarise(m = mean(value),
 s = sd(value)) %>%
 ungroup() %>%
 mutate(m = signif(m, digits = 3),
 s = signif(s, digits = 2),
 ms = if_else(variable == "n", as.character(m), paste0(m, " (", s, ")")),
 sex_incl = paste(sex, include, sep = "_")) %>%
 dplyr::select(-m, -s, - sex, -include) %>%

 pivot_wider(names_from = sex_incl,
 values_from = ms) %>%
 select(variable, female_incl, female_excl, male_incl, male_excl) %>%
 mutate(variable = factor(variable, levels = c("n", "age", "weight", "height", "fat.whole"),
 labels = c("N", "Age (years)", "Mass (kg)",
 "Stature (cm)", "Body fat (%)"))) %>%
 arrange(variable) %>%

 gt() %>%
 tab_footnote(footnote = "Values are mean and (SD)") %>%
 tab_spanner(label = "Female", columns = c("female_incl", "female_excl")) %>%
 tab_spanner(label = "Male", columns = c("male_incl", "male_excl")) %>%
 cols_label(variable = " ",
 female_incl = "Included",
 female_excl = "Excluded",
 male_incl = "Included",
 male_excl = "Excluded")

`summarise()` has grouped output by 'sex', 'include'. You can override using
the `.groups` argument.

Table 7.2: Participant characteristics

	
	Female
	Male

	Included
	Excluded
	Included
	Excluded

	N
	18
	4
	16
	3

	Age (years)
	22 (1.3)
	22.9 (1.6)
	23.6 (4.1)
	24.3 (1.5)

	Mass (kg)
	64.4 (10)
	64.6 (9.7)
	75.8 (11)
	88.2 (22)

	Stature (cm)
	168 (6.9)
	166 (7.6)
	183 (5.9)
	189 (4.6)

	Body fat (%)
	34.1 (5.6)
	28.8 (8.7)
	20.4 (6)
	24.3 (15)

	Values are mean and (SD)

7.3 An exercise in data wrangling and tables

In total 30 college students performed a heavy-resistance training protocol where training volume was constantly increased over six weeks. In (Haun et al. 2018), a part of the study, focusing on supplementation was reported. In (Haun et al. 2019), participants were divided into two clusters based on training responses and the authors aimed to answer the question what separates high- from low-responders to resistance training.

In this exercise we want to reproduce a big part of Table 1 in (Haun et al. 2019). The Table as re-produced here can be seen below. See the original article for explanation of clusters. To select variables, see the data description in the exscidata package, the data set is called hypertrophy.

Baseline characteristics at PRE and back squat training volume between clusters

	
	HIGH (n = 10)
	LOW (n = 10)

	Age (years)
	20.9 (1.9)
	21.5 (1)

	Training age (years)
	5.5 (2.3)
	5.5 (2)

	Body mass (kg)
	78.8 (8)
	83.1 (12.8)

	DXA LBM (kg)
	62.2 (5.9)
	65.1 (9.7)

	DXA FM (kg)
	13.5 (4.9)
	14.5 (4.9)

	Type II fiber (%)
	59.4 (16.9)
	50.2 (13.6)

	3RM back squat (kg)
	127 (23.3)
	135.4 (14.1)

	Total back squat training volume (kg)
	106610.2 (18679.4)
	111820.8 (12962.5)

	Values are mean and (SD)

A possble solution
load the data
data(hypertrophy)

hypertrophy %>%
Select the variables needed to reproduce the table
 dplyr::select(PARTICIPANT,
 GROUP,
 CLUSTER,
 AGE,
 BODYMASS_T1,
 TRAINING_AGE,
 PERCENT_TYPE_II_T1,
 SQUAT_3RM,
 DXA_LBM_T1,
 DXA_FM_T1,
 SQUAT_VOLUME) %>%
 # Pivot longer to gather all variables
 pivot_longer(cols = AGE:SQUAT_VOLUME, names_to = "variable", values_to = "values") %>%
 # Remove participants not belonging to a cluster
 filter(!is.na(CLUSTER)) %>%
 # Create a grouping before summarizing
 group_by(CLUSTER, variable) %>%
 summarise(m = mean(values),
 s = sd(values)) %>%
 # For nice printing, paste mean and SD
 mutate(m.s = paste0(round(m,1), " (", round(s,1), ")")) %>%
 # Select only variables needed for the table
 select(CLUSTER, variable, m.s) %>%
 # Transform the data set to a wide format based on clusters
 pivot_wider(names_from = CLUSTER, values_from = m.s) %>%
 # Re-arrange the "variable" variable, correct order with levels, and correct labels
 mutate(variable = factor(variable, levels = c("AGE",
 "TRAINING_AGE",
 "BODYMASS_T1",
 "DXA_LBM_T1",
 "DXA_FM_T1",
 "PERCENT_TYPE_II_T1",
 "SQUAT_3RM",
 "SQUAT_VOLUME"),
 labels = c("Age (years)",
 "Training age (years)",
 "Body mass (kg)",
 "DXA LBM (kg)",
 "DXA FM (kg)",
 "Type II fiber (%)",
 "3RM back squat (kg)",
 "Total back squat training volume (kg)"))) %>%
 # Sort/order the dataset
 arrange(variable) %>%
 # Use gt to output the table with appropriate caption and column names.
 gt() %>%
 cols_label(variable = " ", HIGH = "HIGH (n = 10)", LOW = "LOW (n = 10)") %>%
 tab_footnote(footnote = "Values are mean and (SD)")

7.4 References and footnotes

1. All this talk about pivot, take a break and watch this clip from the hit series “Friends”, its about “pivot”!

8 Writing your first reproducible report

As we have already discussed, the degree to which research is reproducible is determined by the availability of:

	The data

	Code to analyse the data

	Text to describe the code

To make these ingredients even more tasty, we might want to have them nicely stored together. Using the tools we discuss in this course we can think of data analysis projects as self-contained projects with all necessary ingredients. RStudio projects can help you organize your data and code, and text in one place. You can also link your project to an online repository for others to access. In this chapter we will discuss how reproducible report can be regarded as such a project. Online collaboration will be discussed in the next chapter.

8.1 RStudio projects and your reproducible report

When you build an analysis in a R markdown or quarto file, R will use the folder that the source file is in as the root directory. This directory (or folder) is the top directory in a file system. This means that R will look for data or other files used to generate the report in this folder structure. Think of this folder as ./ (confusing, I know! But bare with me!). Any sub-folders to the root directory can be called things like

	./data/ (a folder where you keep data files),

	./figures/ (a folder where you output figures from analyses).

The R markdown or quarto file, being in the root directory will have the “address” ./my_rmarkdown_file.Rmd.

This has several advantages, as long as you stick to one rule: When doing an analysis, always use relative paths (“addresses” to files and folders). Never reference a folder or file by their absolute path. The absolute path for the file I’m writing in now is C:/Users/Daniel1/Documents/projects/quant-methods/06-writing-reports.qmd. The relative path is ./06-writing-reports.qmd. When working in a “project” you may move the folder containing your project to other locations, but relative paths will not break.

If you want to share your analysis, all you need to do is share the folder with all content with your friend. If you use relative paths, everything will work on your friends computer. If you use absolute paths, nothing will work, unless your friends computer uses the same folder structure (highly unlikely).

RStudio projects makes it easy to jump back and forth between projects. The project menu (top right corner in RStudio) contains all your recent projects. When starting a new project, R will create a .Rproj file that contains the settings for your project. If you start a project and click this file, a settings menu will appear where you can customize settings for your particular project.

What does this have to do with my quarto/RMarkdown file? As mentioned above, the source file is often written in a context where you have data and other files that help you create your desired output. By always working in a project makes it easy to keep every file in the right place.

8.2 Getting started with R projects

To start a new project in RStudio:

	Press the project menu in the upper right corner, choose “Start a project in a brand new working directory”

	In the next menu, select “New Project” and chose a suitable location on your machine for the project to live.

	Un-check the option of creating a git repository. We will do this later.

	Name the project with an informative name. “Project1” is not good enough, “rproject-tutorial” or “rproject-report-workshop” is better as you will be able to track it down afterwards.

We have now started up a brand new project without version control. The next step is to make sure the setting of the project is up date with our Global settings in RStudio. By clicking the .Rproj file in our files tab, we will open up a settings window. These are the settings for the project. Under General we see that we can set RStudio to handle the workspace and history as default. This means that our global options will be used. The global options regarding workspace should be to never save workspace, do not restore on start up and do not save history.

8.2.1 What folder am I in?

The great advantage of an RStudio Project is that it will make it easier to keep everything contained in our folder. To check what folder we are currently in, type getwd() in the console. R should return the full path to our working directory. If this is the case, success. If not, you have probably not succeeded in opening up a project, or you have somehow told R to set another working directory.

The working directory is the root directory. It is possible to set the working directory manually. However, we should aim not to do that! The R command setwd() should not be used as it breaks relative paths.

See R for Data Science, chapter 7 for more details on RStudio projects.

8.3 Authoring reports in quarto

So much fuzz just for writing a report? Yes, it is a bit more work to get started. The upside is that this system is easier to navigate with increasing complexity compared to a system where text, figures, tables and software are located on different locations in your computer and the final report requires copy-paste operations.

As mentioned before, we will focus on the more modern format for authoring reports in R, quarto. In this section we will introduce the basic building blocks of a report and how to put them together. We have already covered figures and tables, now its time to put that into context.

8.3.1 The Markdown syntax, and friends

We have already mentioned the markup language markdown1. This enables an author like yourself to format your text in a plain text editor. This has the advantage of keeping formatting explicit and available from the keyboard. In a word editor like MS Word, formatting is sometimes not obvious and you need to point and click make changes. The R-markdown style of markdown includes the ability to combine code in code chunks and embedded in text. This makes it possible to include code output in the final report. Another technical achievement that makes RMarkdown and quarto possible is Pandoc, a general document conversion software. Pandoc can convert files from one format to another, this includes the operations that we use, from markdown to HTML, PDF or Word. Both markdown and pandoc are free and open source software that makes life easy for us!

8.3.1.1 Markdown basics

The idea of using markdown is that everything is formatted in plain text. This requires a little bit of extra syntax. We can use bold or italic, striketrough and superscript. Lists are also an option as numbered:

	Item one

	Item two

And, as unordered

	Item x

	Item y

	With sub item z

Links can be added like this.

A table can be added also, like this:

	Column 1
	Column2

	Item1
	Item 2

The whole section above will look like this in your plain text editor:

The idea of using markdown is that everything is formatted in plain text.
This requires a little bit of extra syntax. We can use **bold** or *italic*,
~~striketrough~~ and ^superscript^. Lists are also an option as numbered:

1. Item one
2. Item two

And, as unordered

* Item x
* Item y
 + With sub item z

Links can be added [like this](https://rmarkdown.rstudio.com/authoring_basics.html).

A table can be added also, like this:

Column 1	Column2
Item1	Item 2

8.3.2 Additional formatting

In addition to plain markdown, we can also write HTML or LaTeX in RMarkdown or quarto files.

HTML is convenient when we want to add formatted text beyond the capabilities of markdown, such as color. Some formatting might be considered more easily remembered such as subscript and superscript. Notice that HTML and markdown syntax can be combined:

Some Markdown text with some blue text, superscript.

See here for syntax
HTML is convenient when we want to add formatted text
beyond the capabilities of markdown, such as
color. Some formatting
might be considered more easily remembered such as
_{subscript} and ^{superscript}.

Notice that HTML and markdown syntax can be combined:

Some Markdown text with some *blue*
 text, ^{super**script**}.

LaTeX is another plain text formatting system, or markup language, but it far more complex than markdown. Text formatting using LaTeX is probably not needed for simpler documents as markdown and HTML will be enough. The additional advantage of using LaTeX comes with equations.

Equations can be written inline, such as the standard deviation s=∑(xi−x‾)2n−1s = \sqrt{\frac{\sum{(x_i - \bar{x})^2}}{n-1}}. An equation can also be written on the center of the document

F=ma(8.1)
F=ma
 \qquad(8.1)

We are also able to cross-reference the equation Equation 8.1 for force (FF).

A larger collection of equations is sometimes needed to describe a statistical model, as in Equation 8.2.

yi∼Normal(μi,σ)μi=β0+β1xi,(8.2)
\begin{aligned}
\begin{split}
\text{y}_i &\sim \operatorname{Normal}(\mu_i, \sigma)
\\
\mu_i &= \beta_0 + \beta_1 \text{x}_i,
\end{split}
\end{aligned}
 \qquad(8.2)

The equation above could look like this in your editor, including the tag ({#eq-model}) used for cross-referencing:

$$
\begin{align}
\text{y}_i & \sim \operatorname{Normal}(\mu_i, \sigma) \\
\mu_i & = \beta_0 + \beta_1 \text{x}_i,
\end{align}
$$ {#eq-model}

See this wikibook on LaTeX for an overview on mathematics in LaTeX.

8.3.3 Code chunks

Using RMarkdown syntax we can add a code chunk using the following syntax:

```{r}
#| label: fig-simple-plot
#| message: false
#| echo: true

dat <- data.frame(a = rnorm(10, 10, 10), 
                  b = runif(10, 1, 20))

plot(dat)

```


We recognize the R code inside the code chunk but we have only touched upon code chunk settings. These are settings that tells R (or quarto) how to handle output from the code chunk. message: false indicate that any messages from R code should not be displayed in the output document. echo: true indicates that the code in the code chunk should be displayed in the output document. The label is important as it enables cross-referencing the output. If your code chunk outputs a figure the prefix fig- must be in the label to enable cross-referencing. Likewise, if your code chunk creates an table, the prefix tbl- must be in the label. Possible code chunk settings also include figure and table captions.

Settings can also be specified in the YAML field in quarto files. We might not want to display our code, messages or warnings in the final output. We would specify this in the YAML field as

title: "A basic quarto report without code"
execute:
 echo: false
 message: false
 warning: false

See here for documentation on execution options for code chunks in quarto. See also Chapter 29 in R for data science.

8.3.4 Cross-referencing, references and footnotes

We have mentioned cross-referencing above, this basically means referencing specific parts of your document in the text. A figure might be mentioned in the text, such as Figure 8.1. To insert the cross-reference in text, use the @fig-label syntax where fig- is the required prefix for figures and label is a user defined unique identifier. The label should be included in the code chunk under such as #| label: fig-label. The equivalent prefix for tables is tbl-.

[image:]

Figure 8.1: This is an example of a Figure with a caption.

We might want to cross-reference a section in our document. This is easily done by inserting a tag at the section header such as {#sec-cross-reference}, this tag can be referenced in text using @sec-cross-reference resulting in Section 8.3.4. The sec- part is the required prefix for a section.

For additional details on cross-referencing, see the quarto documentation on cross-referencing.

Citations are mandatory in academic writing. Be sure to take advantage of the built in support for citations. When writing in quarto (or RMarkdown) we can think of a reference as having three parts. The identifier, the reference and the style. We use the identifier when authoring. For example, let’s cite the R for Data Science book, we do this by using the following syntax (Wickham and Grolemund 2017). The syntax requires that we have linked a bibliography to the document. The bibliography should include the reference, with the same identifier. The bibliography is a collection of reference entries written in bibtext format (see below). It must be included in the document meta data field (YAML field).

@book{r4ds,
 title={R for data science},
 author={Wickham, Hadley and {\c{C}}etinkaya-Rundel, Mine and Grolemund, Garrett},
 year={2023},
 publisher={" O'Reilly Media, Inc."}
}

Notice the identifier. When adding the citation [@r4ds] it will turn out to (Wickham and Grolemund 2017) in the formatted text and added to the bottom of the document as a full reference. If we want another citation style we can specify a file responsible for citation styles. The default is the Chicago style. Specifying a citation style file in YAML will change the style, for example csl: my-citation-style.csl tells quarto to use the file my-citation-style.csl when formatting citations. This file can be edited or copied from a large collection of possible styles located in the citation style language repository. The repository is hosted on GitHub and searchable, click “Go to file” and type “vancouver” to get examples of CSL files that uses a Vancouver-type citation style.

Footnotes can be handy when writing. In the default mode, these will be included as superscript numbers, like this2, numbered by order of appearance.

The syntax for including footnotes is straight forward. Notice that the text for the footnote is included below the paragraph using the identifier created in the text.

See here for footnote syntax
Footnotes can be handy when writing. In the default mode,
these will be included as superscript numbers, like
this[^footnote], numbered by order of appearance.

[^footnote]: This is a footnote.

See the quarto documentation on citations and footnotes.

see also Chapter 29 in R for data science.

8.4 Additional files and folder structures in a complete analysis project

As we starting to notice, a report authored in quarto or R Markdown often requires additional files to render properly. We might have a collection of references, some data sets and possibly some analysis files that are not included in the quarto or R markdown file. To keep everything organized I recommend a general folder structure for every analysis project. This structure might change as the project grows or changes. The parts listed below are what I usually end up with as a common set in the majority of projects I work with3.

8.4.1 The readme-file

The README-file can be, or should be an important file for you. When a project is larger than very tiny, it becoms complex and you should include a README-file to tell others and yourself what the project is about and how it is organized. Creating a file called README.md in a GitHub folder automatically renders it on the main page of your repository (more about that later). Here you have the opportunity to outline the project and explain the organization of your projects folder/repository.

I find it very helpful to work with the README-file continuously as the project evolves. It helps me remember where the project is going.

A very basic ouline of the README-file can be

My project

Author:
Date:

Project description
A description of what this prject is about, the
purpose and how to get there.

Organization of the repository

Files are organized as...

Changes and logs
2023-08-15: Added a description of the project...

8.4.2 /resources

I usually include a sub-folder called resources. Here I keep CSL-files, the bibliography, any styling or templates used to render the report. Keeping this in a separate folder keeps the top-folder clean.

8.4.3 /data

The data folder is an important one. Here I keep all data that exists as e.g., .csv or .xlsx files. If I create data in the project, such as combined data sets that are stored for more convienient use, I keep these in a sub-folder (e.g., data/derived-data/)4. If there is a lot of raw unprocessed data, these might be stored in data/raw-data/ with specific sub-folders.

8.4.4 /figures

If you want to make figures for presentations or submission to a journal, you might want to save output as .tiff or .pdf files. When doing this it might be a good idea to structure a figure-folder with e.g. figure1.R that renders to e.g. figure1.pdf. If you only include figure output in the quarto, the figure folder might contain R-scripts that produces the figures. The end results are included in the quarto document by sourcing the R-script. This detour might make it easier to find code for a specific figure once your project is large enough.

8.4.5 /R

R-scripts that are not figures but contains analyses or data cleaning or the like can be stored in R scripts in a specific folder. The reason to keep R scripts separate from a quarto file might be that they are large and produces some output, like a data set, that is later used in the report file. It makes it easier to find and work on specific code without breaking other parts of your project. Actually, it is a good idea to “build” the parts of your analysis as smaller parts.

8.5 Quarto formats

Quarto brings many possibilities for authoring data-driven formats, including but not restricted to websites, books, blogs and presentations. In this course

8.5.1 Microsoft Word intergration in R Markdown and Quarto

Sometimes it is useful to “knit” to a word file. For example when you want to share a report with fellow students who are not familiar with R. R Markdown/Quarto can be used as a source for word documents (.docx).

To create a word document from your Rmd-file/qmd-file you need a working installation of Microsoft Word. Settings for the output is specified in the YAML metadata field in the Rmd-file. This is the first section of a Rmd file, and when you want it to create a word file you specify it like this:

title: "A title"
author: Daniel Hammarström
date: 2020-09-05
output: word_document

The output: word_document (or format: docx when using quarto) tells R to create a word file. If you are not happy with the style of the word document (e.g. size and font of text) you can tell R to use a template file. Save a word file that you have knitted as reference.docx and use specify in the YAML field that you will use this as reference. See here for the equivalent formatting of quarto documents

title: "A title"
author: Daniel Hammarström
date: 2020-09-05
output:
 word_document:
 reference_docx: reference.docx

Edit styles (Stiler in Norwegian) used in the reference file (right click on the style and edit). For example, editing the “Title” style (Tittel in Norwegian) will change the main titel of the document. After you have edited the document, save it.

When you knit the document again, your updated styles will be used your word document.

Here you can read more about using R Markdown together with word. If you do not have word installed, you can also use Open Office. Read more about it here.

8.5.1.1 Adding references to R Markdown and Quarto files

References/citations can be added to the report using the bibliography option in the YAML field. Citations needs to be listed in a file, multiple formats are availiable. A convenient format is bibtex. When using this format, create a text file with the ending .bib, for example, bibliography.bib.

The bibliography.bib-file needs to be activated in the YAML-field. Do it by adding this information:

title: "A title"
author: Daniel Hammarström
date: 2020-09-05
output:
 word_document:
 reference_docx: reference.docx
bibliography: bibliography.bib

Add citations to the file in bibtex-format. Here is an example:

@Article{refID1,
 Author="Ellefsen, S. and Hammarstrom, D. and Strand, T. A. and Zacharoff, E. and Whist, J. E. and Rauk, I. and Nygaard, H. and Vegge, G. and Hanestadhaugen, M. and Wernbom, M. and Cumming, K. T. and Rønning, R. and Raastad, T. and Rønnestad, B. R. ",
 Title="{Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training}",
 Journal="Am. J. Physiol. Regul. Integr. Comp. Physiol.",
 Year="2015",
 Volume="309",
 Number="7",
 Pages="R767--779",
 Month="Oct"}

The part that says refID1 can be edited to something appropriate. This is a reference identification, you use it to get the citation into the text. When citing you do it in the form

Blood flow-restricted training leads to similar adaptations as traditional training [@refID1].

This will appear in text as:

Blood flow-restricted training leads to similar adaptations as traditional training (Ellefsen et al. 2015).

The reference will end up in the end of the document (as on this webpage).

You can gather references in bibtex format from Oria (use the BIBTEX icon) and from PubMed using TeXMed. You can also export reference in bibtex format from citation software like Endnote or Zotero. Make sure you check all references when entering them, especially MedTex gives some problems with “scandinavian” letters (å æ ä ø ö).

Recently RStudio added support for adding citations inside the visual markdown editor.

8.6 References and footnotes

1. Markdown was introduced in 2004 as a syntax to convert plain text to formatted HTML. Markdown is primarily attributed to John Gruber.

2. This is a footnote.

3. This organization was initially inspired by Karl Broman’s steps towards reproducible science.

4. Again, an important note from Karl Broman, “Organize your data and code”

9 Version control and collaboration

In the previous chapter we underlined the importance of the project as a way of keeping data, code (and text) in an organized manner. The project concept in RStudio can easily be extended to include version control. Version control also makes collaboration easier. Most often, collaborating on writing a report, assignment or paper is hard. You send a file, get another one in return. Some files are on dropbox, some are lost. What if we had a system for collaboration that made it easy to follow the progress of a project. Connecting RStudio projects to git and GitHub makes this possible.

Before you go any further you might want to spend about 25 minutes on a couple of videos explaining the concepts of version control and git. Find the videos here

9.1 Why version control?

Github is a platform for collaborative coding. As we have noted before, collaboration concerns both others and you, in the future! This means that having a formal system for keeping track of your projects is a good thing.

Github also provides version control. Version control can help you track changes in your entire analysis or writing project. This is helpful when multiple files make up a complex project, including e.g. scripts, data and manuscript files. It is also helpful when multiple collaborators work together (e.g. writing a report). You will, by using version control, avoid overwriting other peoples work. With multiple changes made to the project, merging will create the latest up-to-date version. When you change a file in your analysis you will be required to describe the changes you have made. Git creates a record of your changes. This also means that we have “backups” of previous versions.

9.2 Three ways of hooking up to GitHub

9.2.1 Create a new repository on GitHub and clone it

Access your personal GitHub account and click New under repositories. This is equivalent to going to www.github.com/new. GitHub will ask for a repository name, a description and whether you want the repository to be public or not. You can also chose to add a Readme-file.

Names and descriptions are important, a better name and description makes it easier for you and others to find and make use of your repository. Even when making repositories for school assignments, a good name will likely make it more re-usable in the future. The same is true for the readme file. So, name the repository with a descriptive name, write a short description with the purpose of the repository and add a readme-file to the repository.

A public repository is open for everyone, private repositories have restricted access.

Once the repository is created you can clone it. This means that you will copy the content to your local machine (PC/Mac). In RStudio this is most conveniently done by starting a new RStudio project and selecting Version Control in the project menu. You will be asked to copy the address shown under “Code” on GitHub.

9.2.2 Create an online repository from a local folder

Let’s say that we have a local folder that is a RStudio Project, without version control and we want to create a online repository together with version control. We can use GitHub desktop to accomplish this or GitHub CLI.

Using the terminal and GitHub desktop:

	The first step is to make the local folder a git repository, in RStudio with the project running go to a terminal and type git init. The terminal will let you know that you have initialized a git repository.

	Start up GitHub desktop, under File choose Add local repository and find the folder on your computer where you have your RStudio project. Once open in GitHub desktop you will see all changes and additions of new files.

	Commit your changes by writing a first commit message, and possibly a longer description of the commit.

	Click “Publish repository”, you will be asked to edit the name and description of the repository and choose whether to have the repository private or not (see above for recommendations).

	Go to GitHub.com and check if the repository is published.

Using the terminal and GitHub terminal client (CLI):

	Be sure to be in your RStudio project and use the terminal in RStudio to initiate a git repository, type git init in the terminal.

	Also in the terminal type gh repo create, this will guide you through the same process as with GitHub desktop but all selections are done in the terminal.

9.2.3 Create an online repository from a local git repository

If you have already initialized a RStudio project as a git repository you can follow the steps above without the git init command. Using git init on an already initialized git repository will reinitialize it. This will not remove git history of the repository (see here for documentation).

9.3 Git commands and workflows

9.3.1 Add, commit and push

The day to day workflow when working on a git project involves making changes to your files and saving those changes locally, and in the version control system. By the end of the day you might also want to make sure all changes are synchronized with the online repository.

This workflow includes the git commands add, commit and push.

Using the terminal git add <filename> or git add -A adds a specific file or all changes to a list of changes to be “committed” into version history. The equivalent operation in GitHub desktop is checking all boxes under changes. This is done automatically and you have to uncheck files or changes that you do not want to commit to history.

In the terminal we can commit changes to the git history using the command git commit -m "a commit description message" the additional part -m "a commit... is the required commit message. It is good to be informative if you need to find a specific change to a file. In GitHub desktop this is easily done by writing a commit message under summary in the bottom left corner once you have changes in your repository.

The last step, git push, means that you are uploading all changes to the online repository. This will update the repository on GitHub, your version history is now up to date in your online repository. This also means that you have an online backup of your work.

In GitHub desktop we can examine the commit history of a project by looking in the History tab. Using the web interface at www.github.com we can get an overview of all commits by clicking Activity or commits in the repository view. Using the command line we can look at the the commit history by using git log. This will list all commits and you can scroll trough them by pressing enter. To exit this list press q.

Further descriptions of a certain state of the repository can be added using tags. Using a tag we can make a note of a certain state of the repository, for example when an assignment is ready to exam or when a journal article is ready for submission. In GitHub desktop we might want to put a tag on a specific commit. We can do this by right-clicking on a commit in the history followed by Create tag. Using the command line, tags are added with git tag, see the git documentation for details.

9.3.2 Collaboration, pull, clone and fork

Collaboration is most often done with yourself in the future. The git pull command (using the terminal) downloads all changes to your working directory. You want to do this when you have changes in the online repository that is not synchronized with the local repository. This might be the case if you have made changes to your repository on GitHub, like added a readme file. Or if you are collaborating with someone who have made changes to the repository. I work on multiple computers, sometimes on the same repository, the online repository is where a keep the most up to date version of my project.

Using GitHub desktop, we can click Fetch origin to get the latest changes from the online repository. GitHub desktop will suggest to pull these changes to the working directory after you have done this operation.

We have already covered git clone, this essentially means downloading an online repository to your local machine. This is most easily done while initializing a new RStudio project.

A fork is a copy of someones online repository that is created as a new repository under your user. You now have access to this repository and can make changes. The repository can have its own life or be used to create changes that later are suggested as changes to the “parent repository”.

In this course you can fork a template for the portfolio exam. This is an example where your fork will have its own life.

If a fork is used to suggest changes this is done through a pull request. Using the web client (GitHub), we can click create pull request when inside a forked repository. This will take you a few steps where you are expected to describe changes to the repository. The original author will get a notification to review the pull request and can chose to incorporate the changes into the parent repository.

9.3.3 Branches

Much like a fork, we can create copies of our own repository. These are called branches. A branch might contain changes that we want to try out before we make it the “official” version of our repository. These changes can include experiments that might mess up things or break code.

Using GitHub desktop we can create a new branch by clicking Current branch in the upper left and then Create branch. In GitHub desktop it is easy to switch between branches.

Using the command line we can create a branch by typing git branch <new-branch-name> where <new-branch-name> is a name of the branch that you choose. Using the command git checkout <new-branch-name> we switch to the new branch from the current branch, which is often called master. We can use git checkout master to get back to the original branch. If you switch between branches while working in both your work can be saved using a commit.

9.3.4 Conflicts

A conflict emerges when two versions of a files cannot be merged into one. The web client will check if, for example, two branches will be possible to merge. If you try to merge two versions of a file that have different changes made to the same line you will get a message from GitHub desktop or on the command line tool. A conflict needs to be resolved manually.

Find the file that is affected by the conflict. This is possible to do by using git status on the command line. Next, find the lines that are affected by the conflict and edit them to what should be correct content. A conflict can be seen in the file as

<<<<<<< HEAD:filename.file

content

=======

other content

>>>>> branch:filename.file

In the above example, “content” and “other content” is the content of the two conflicting versions of the file (filename.file). You have to pick one or write something else instead. You also need to remove markers (<<<, ==== and >>>). When you are satisfied with the changes commit the changes. This will resolve the conflict.

9.4 Additional great things about GitHub

GitHub has great capabilities for managing projects. You can for example:

	Post issues that are suggestions or questions regarding a repository. Issues can be categorized with labels and assigned.

	You can create to-do lists in the Projects tab (in the web interface). This could be a nice way of sharing and tracking the progress of a project.

	You can build a wiki. This is simply a collection of pages that can be used to document the repository or a project (in a wider sense) that you are working on.

	All of the above can be private and public. You can choose whom have access to your repository. This makes it easy to work on a project even if you need to keep things a secret.

9.5 When will this knowledge be handy?

When writing your master thesis, it will be extremely easy to share your code with your supervisor or other students, whit whom you collaborate. You can just invite someone to make changes in your repository and then download them. As noted several times before, your most frequent collaborator is you. Using git makes it easy to keep track of changes in your project and it keeps your most frequent collaborator from messing up your work.

Version control workflows are part of almost all technology companies, and will most certainly be part of many more types of businesses, institutions and workplaces in the future as we need to collaborate on large, complex projects. Knowing about these systems is in that sense quite handy!

9.6 Resources

There are of course more functions in git, here are some resources for deeper understanding.

	Extensive resources can be found on Happy Git and GitHub for the useR

	Karl Broman provides a “minimal tutorial”

	GitHub hosts resources for learning Git

	Git documentation, here you will find all git commands

9.7 Footnotes and references

10 Reliability in the physiology lab

We will follow Hopkins definition of reliability in this section (Hopkins 2000), and specifically concern ourselves with reliability in test/measurements that produces continuous numbers as results. For this purpose you have collected data in several tests (or measurements), at least two times, from several individuals. You can now estimate the reliability of each test (or measurement). The reliability, expressed as typical error is an estimate of what we may expect as the random variation around a measurement if repeated under similar circumstances in the same individual (Hopkins 2000).

Hopkins (Hopkins 2000) details two measures of reliability for estimates of within-individual reliability that are closely related, the typical error and limits of agreement. Using the example data in (Hopkins 2000) we can calculate first the typical error.

We will take advantage of the change scores between two duplicate measures and derive the estimate of the typical error from them. (To run the code, copy and paste into your own source file).

library(tidyverse)

example_data <- data.frame(trial1 = c(62, 78, 81, 55, 66),
 trial2 = c(67, 76, 87, 55, 63))

Calculate the typical error
example_data %>%
 mutate(diff = trial2 - trial1) %>% # Change/difference score
 summarise(s = round(sd(diff), 1), # Summarize to calculate sd, and...
 te = round(s / sqrt(2), 1)) %>% # the typical error.
 # Round is used to get less decimal places...
 print()

The interpretation of the typical error is that this is the average variation of the test. If you repeat the test, this is the random variation that can be expected. If expressed as a percentage of the mean, it can be compared to other tests. For example, is test A more reliable than test B? In the code below, we will add the mean to allow calculation of the coefficient of variation (CV, or as referred to in (Hopkins 2000), typical percentage error).

Calculate the typical error
example_data %>%
 mutate(diff = trial2 - trial1) %>% # Change/difference score
 summarise(s = round(sd(diff), 1), # Summarize to calculate sd, and...
 m = mean(c(trial1, trial2)), # mean
 te = round(s / sqrt(2), 1), # the typical error.
 cv = round(100 * (te / m), 1)) %>% # Calculate as a percentage of the mean
 # Round is used to get less decimal places...
 print()

The limits of agreement has a nice interpretation. If the limits of agreement are created as the 95% limits of agreement, there is a 1 in 20 chance of finding a test score outside these limits. The limits of agreement are calculated using a t-distribution. We will add to the code chunk to calculate the limits of agreement.

Calculate the typical error
example_data %>%
 mutate(diff = trial2 - trial1) %>% # Change/difference score
 summarise(s = sd(diff), # Summarize to calculate sd, and...
 m = mean(c(trial1, trial2)), # mean
 te = round(s / sqrt(2), 1), # the typical error.
 cv = round(100 * (te / m), 1), # Calculate as a percentage of the mean
 upr.L = mean(diff) + qt(0.975, 4) * s,
 lwr.L = mean(diff) - qt(0.975, 4) * s) %>%
 print()

The part with qt(0.975, 4) is the R-code equivalent to t0.975,4t_{0.975, 4} (See equation 1 in (Hopkins 2000)) which is the t-distribution with 4 degrees of freedom. The degrees of freedom comes from the number of participants in the data set minus 1 (n−1n - 1). As noted by Hopkins, we may use the CV in the calculation of limits of agreement.

10.1 Smallest worthwhile change or effect

When we do not have any measures of reliability, nor clinically relevant thresholds for a test, the smallest worthwhile effect may provide an indication of important changes in a test. An arbitrary number of the smallest effect of interest in an average change score has been defined as 20% of the between participant standard deviation (0.2×SD0.2\times SD). This tells you nothing about the reliability of your test, it simply gives a proportion of the expected population variation.

11 Introduction to the molecular exercise physiology lab

11.1 Health and safety in the lab

To ensure lab work is performed according to current rules and regulations regarding health and safety, the document «Retningslinjer Idrettslab» about this has been formed. The document describes standard operating procedures (SOP) pertinent to the molecular exercise physiology lab, as well as the “testlab”. All students and employees working in either of the labs are responsible to acquire knowledge about these SOPs. This document can be found here: Retningslinjer Idrettslab

In the molecular lab, the greatest health and safety hazards are the chemicals we handle. To assist us in safe chemical handling, we use the digital chemical database EcoOnline. Username: idrett, password: idrett. In this database, you can find information about all the chemicals we have in our lab. Each chemical has its own safety data sheet (SDS). For all chemicals you work with, you should read the SDS and work according to recommendations for protective equipment and handling of the chemical.

We have the following protective equipment in the molecular lab: lab coat, gloves, facial mask, eye protection. In addition we have two fume hoods where we can work with extra hazardous chemicals to avoid toxic fumes, vapours and dust. The fume hood also provides a physical barrier to chemical spills.

If you spill or spray any chemicals on yourself, somebody else or on the floor, benchtop etc., it’s important that you know how to handle this. Information about this can be found in the chemical’s SDS.

Another important aspect of health and safety in the lab is correct storage of chemicals. Chemicals that are either toxic, explosive, flammable, oxidizing, compressed gas, corrosive, irritant, environmental damaging and/or health hazards should be stored appropriately. Information about where a chemical should be stored can be found in the SDS. The lab manager is responsible for correct storage of chemicals, but all lab users are responsible for placing the chemical they’ve used back where it belongs.

All chemicals need to be handled appropriately. This means that its not allowed to throw all chemicals in the sink or regular trash bin. Some chemicals need to be declared by official waste handlers (GLØR). The waste of these chemicals should be stored in appropriate containers. The lab manager is responsible for making sure that such containers are available in the lab and that they are marked properly. Information about which chemicals that need to be declared can be found in the SDS, or by asking the lab manager. Generally, all biological waste (saliva, blood, muscle, urine) should be thrown in yellow waste bins, and nothing but biological waste should be thrown in yellow waste bins.

11.2 Good laboratory practice

	Standard work equipment in the lab is lab coat and gloves. No sandals with open toe.

	Never drink or eat, or keep food and drinks in the lab.

	Benchtops should be clean and tidy.

	Never work alone in the lab.

	Always come prepared: plan, acquire knowledge about the chemicals you will work with, make sure you have all the equipment and consumables you need.

	Work according to protocol and write down everything you do (elab). If you have to do something outside protocol, make sure to always write down what you did and why.

	ALWAYS mark the tubes/box you are working with (content, name/initials, date/year, project ID)

	Ask the lab manager if in doubt

	Try to keep the lab slightly tidy while working – others are also working there

	Precision/accuracy and focus are very important while working in the lab!

11.3 The laboratory journal

Your laboratory journal fills several purposes. It helps you in keeping track of what you have done, why you did it, what were the results of your experiments and what were your conclusions. The journal also helps your collaborators (fellow students, supervisors, laboratory managers) to understand what you have done. In a broader perspective the laboratory journal can be viewed as a primary source of data for your prospective manuscript, and when the manuscript has been published, the journal is source data kept for records at your department.

11.4 Keeping it digital - Using our electronic lab journal

After a couple of years running our lab in Lillehammer, we have arrived at the conclusion that we need to organize the molecular lab using a electronic laboratory journal system. This will solve several issues with organizing laboratory work like storage of data, collaborating, running multiple projects in parallel, having guests and students contributing to projects etc.

Traditionally, laboratory journals are stored in a fire safe cabinets in the lab, in notebooks. In some labs, each page must be “read and understood” and subsequently signed by a lab administrator or principle investigator. People working in laboratories typically have strong feeling about their laboratory journal system, regardless of digital or analog alternatives. The above observations indicate that, as a new lab member you should take care to learn the laboratory journal system and culture of the lab. This will make your work more important to the lab, as it will contribute to the collective knowledge based on the groups work.

Our electronic laboratory journal system can be found at elab.inn.no. As a student at inn you may log in using your student username and password. The system has link to the documentation of the software which can also be found through this web address: doc.elabftw.net/. As a student you will be added to the group related to this course.

11.4.1 What to write in the journal

A laboratory journal should consist of all necessary information needed to replicate your experiments. The tricky thing is that you do not always know what information is needed to do a replication. This means that you will need to include all relevant information about your experiment, and a bit more, within reasonable limits.

11.4.2 Structure of an entry

In the electronic journal (elab.inn.no), entries are recorded as experiments. An experiment starts on a specific date, it has a status, a title and tags can be added. This will make it easy to keep track of the entry. eLabFTW will keep a specific record of your entry and time stamp it. The actual entry has three parts, namely purpose, methods and results. These are suggested in the template when you start a new entry.

The purpose of an experiments should give a clear description of why you are performing the experiment. This description could be “To extract and analyze DNA for ACTN3 genotyping”. Further descriptions could be necessary if you are performing more complex experiments. Maybe you found something out in previous experiment that needs to be validated in this experiemnt. If you spend some time to write this up, your subsequent report will be easier to write and your collaborators will understand what you did.

The methods in an experiment “need to include all relevant information about your experiment, and a bit more, within reasonable limits”, as already mentioned above. A detailed protocol should be included. If you are using pre-written protocols, this entry should refer to this protocol and include any changes made to the protocol. You should also note batch numbers on chemicals and reagents etc. If an experiment fail, a complete record of reagents and machines etc. will make it easier to track potential methodological issues.

The method describes the experiment, e.g. by a step-by-step approach. This section includes recipes of solutions, what samples were used, in what order different steps of the protocol was done, if any problems occurred and so on. Remember to write explicit, you might remember tomorrow, but in one week or one year, you have no idea. A method section (as the other sections) can refer back in the laboratory journal system. For example, maybe you prepared and validated the lysis buffer in a previous experiment, write this and refer to the experiment describing the buffer. A part of a method section can look something like this:

Overview: Freeze dried muscle samples are homogenized in lysis buffer (Refer to experiment: Lysis buffer test) and protein concentrations are determined in the plate reader (raw data included below). Based on protein concentrations, supernatant is normalized to a common 2 μg/μl. Step-by-step: 1. Freeze dry muscle over-night (at least 20 h). 2. Dissect away fat, connective tissue and blood 3. Move ~2 mg to a new tube and add 80 μl of ice-cold lysis buffer per mg of tissue. 4. …”

Finally, the results should be a description of the actual results, and a description of what this means. If you would pick up your experiment later this will help you understand the results. This also applies to collaborations. In eLabFTW you can include raw data files. This will be the primary way of storing raw data from machines and instruments. Importantly, eLabFTW will not give you a way of structuring large amount of data. This step could instead be done outside eLabFTW.

11.4.3 Relationship between the laboratory journal and your samples, solutions, tubes etc.

When you do work in the laboratory, you will notice that you accumulate a lot of micro-centrifuge tubes, boxes full of intermediate sample preparations, solutions etc. To keep track of all this you need to “connect” the content of your laboratory journal entries to the place where you keep all your stuff. For example, when marking a new cryo-box, this should be done with information about what is the content of the box, the date when the box was “started”, your name, and the experiment. Your name, date and experiment can be tracked back to your laboratory journal entries. This means that when your collaborator finds a mystical “Sample X1 2017 10 10, experiment Y”, she can go back to your journal and find out what you did. In summary: label everything!

11.5 Protocols and experiments in the course

Protocols used in the course are as for now available at trainome.github.io.

12 The linear model

12.1 Straight lines 1

A straight line can be used to describe a relationship between two variables (Figure 12.1). This relationship can also be described with a formula:

y=β0+β1xy = \beta_0 + \beta_1x

Where yy is the outcome variable, β0\beta_0 is the intercept, β1\beta_1 is the slope and xx is the predictor. The word “linear” does not mean that we only model straight lines. Instead linear means that parameters (β0\beta_0, β1\beta_1 etc.) are combined together linearly, by summation.

[image:]

Figure 12.1

In the model shown above, yy increases two units for every unit increase in xx. If we measure something in nature and find such a fit (every point on the line) we should check our calculations as perfect relationships are seldom found in measured variables. This is because of measurement error and other non measured variables that affect the relationship we are measuring.

We can add some details to the notation presented above. For a specific observation (yiy_i), we quantify unmeasured sources of variation in an additional term in the formula

yi=β0+β1xi+ϵiy_i = \beta_0 + \beta_1x_i + \epsilon_i

where ϵ\epsilon is the error-term. Here we quantify the distance from the best fit line, or the estimated value for each observation (ŷi\hat{y}_i) to the observed value (yiy_i). The best fit line is the line that minimizes the sum of the squared residual error, or the differences between estimated and observed values:

∑i=1nϵi2=∑i=1n(yi−ŷi)2\sum\limits_{i=1}^{n}\epsilon_i^2 = \sum\limits_{i=1}^{n}(y_i - \hat{y}_i)^2

A more realistic regression model contains some error as we can see in Figure 12.2.

[image:]

Figure 12.2

In the above figure, the errors, or residuals are highlighted as the distance (red lines) from the predicted (blue points) to the observed (black points).

A two variable relationship can be positive (increase in yy as xx increases) or negative (yy decreases as xx increases).

[image:]

Figure 12.3

12.2 Fitting regression models in R

The data above (Figure 12.3) can be fitted to a regression model in R using the lm() function. We will get far by specifying a formula and data where the variables used in the formula are stored. We can store a model as an object and inspect the results by using the summary() function.

df <- data.frame(x = c(5.461851, 6.110910, 6.952707, 5.321775, 5.951849),
 y = c(9.168992, 8.273749, 5.926797, 10.745583, 7.999151))

fit <- lm(y ~ x, data = df)

summary(fit)

Call:
lm(formula = y ~ x, data = df)

Residuals:
 1 2 3 4 5
-0.5561 0.2460 0.1005 0.6542 -0.4445

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.0085 2.6873 8.934 0.00296 **
x -2.6151 0.4488 -5.827 0.01007 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5789 on 3 degrees of freedom
Multiple R-squared: 0.9188, Adjusted R-squared: 0.8917
F-statistic: 33.95 on 1 and 3 DF, p-value: 0.01007

The summary that you get from the model above will show the value of the parameter estimates (including the average estimate, the standard error, t-value and a p-value), we will also get some information about the spread of the residuals and values that tells us about the overall fit of the model.

The estimates from a summary in a two-variable model tells the value of yy when x is zero (the intercept) and the increase in yy for every unit increase in xx (the slope). Can you identify these from the output above?

Two-variable regression (univariate regression) is closely related to the correlation. Try out the code cor.test(dfx, dfy) and see what similarities you find between the outputs.

In the model we use in the example, the intercept is quite “far away” from the rest of the data (see Figure 12.4). This is, as noted above, because the intercept is the value of yy when xx is set to zero.

[image:]

Figure 12.4

Let’s fit some real data. We are using the cyclingstudy data set available in the exscidata package and we might wonder if there is some characteristic that is related to VO2max. For example, do taller individuals have greater VO2max? It is always a good idea to start with a plot before we do the modelling (Figure 12.5).

library(tidyverse)
library(exscidata)

exscidata::cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 ggplot(aes(height.T1, VO2.max)) +
 geom_point(size = 3,
 fill = "lightblue",
 shape = 21) +
 labs(x = "Height (cm)",
 y = expression("VO"["2max"]~(ml^-1~min^-1))) +
 theme_minimal()

[image:]

Figure 12.5: Height and VO2max from the cycling study data set

There might be a positive relationship between the variables, what do you think? You might get a clearer picture if you use geom_smooth(method = "lm") in your ggplot command, try it out (or see below)!

To quantify the relationship between height (height.T1) and VO2max (VO2.max) we can fit a linear model. Before we look at the results of the regression model, we should think about the data and inspect the fit to see if it matches with our assumptions. Assumptions that generally needs to be met in order to get a valid regression model are:

	Independent observations. This is an assumption about the design of the study and the data at hand. If we have observations that are related, the ordinary linear model will give us biased conclusions. As an example, if we collect data from the same participants over time we will not have independent observations and this will lead to pseudo-replication which fools us to be more certain about our results than what we should be. Another way to see it is that non-independent observations will give non-independence of the residuals which is the mechanism that creates bad inference, a bad representation of the system we are trying to study.

	Linear relationship. In the basic case, we expect a trend that can be described with a straight line. If the relationship is curve-linear, we may adjust the fit using e.g. polynomials. The relationship between Height and VO2max is plotted in Figure 12.6 A and highlighted with a best fit line.

	Normal residuals. This condition might be violated when there extreme observations in our data, extreme relative to the majority of our observations. Residuals from a model of the relationship Height and VO2max are plotted in Figure 12.6 B and C.

	Constant variance. This assumption says that we want to be equally wrong all along the explanatory variable. If we predict yy with greater error at large xx we have heteroscedasticity (unequal variance), if we are “equally wrong” we have homoscedasticity (equal variance). Residuals from a model of the relationship Height and VO2max are plotted in Figure 12.6 D against the predictor variable (Height).

Fitting the model and plotting the data
library(tidyverse)
library(exscidata)
library(ggtext)
library(cowplot)

cyc_select <- cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1)

m1 <- lm(VO2.max ~ height.T1, data = cyc_select)

Plotting the raw data together with a best-fit line

figa <- cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 ggplot(aes(height.T1, VO2.max)) +
 geom_point(size = 3,
 fill = "lightblue",
 shape = 21) +

 geom_smooth(method = "lm", se = FALSE) +

 labs(x = "Height (cm)",
 y = expression("VO"["2max"]~(ml^-1~min^-1))) +
 theme_minimal()

Extracting and plotting residuals

figb <- cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 mutate(yhat = fitted(m1)) %>%

 ggplot(aes(height.T1, VO2.max, group = subject)) +

 geom_segment(aes(y = yhat, yend = VO2.max, x = height.T1, xend = height.T1),
 color = "red") +

 geom_point(size = 3,
 fill = "lightblue",
 shape = 21) +

 geom_point(aes(height.T1, yhat),
 size = 3, fill = "orange", shape = 21) +

 geom_smooth(method = "lm", se = FALSE) +

 labs(x = "Height (cm)",
 y = expression("VO"["2max"]~(ml^-1~min^-1))) +
 theme_minimal()

 figc <- cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 mutate(yhat = fitted(m1),
 resid = resid(m1)) %>%

 ggplot(aes(resid)) +

 geom_density(aes(resid),

 color = "orange") +
 geom_rug(color = "orange") +

 scale_x_continuous(limits = c(-1200, 1200)) +

 stat_function(fun = dnorm, n = 101, args = list(mean = 0, sd = 425),
 color = "steelblue") +

 labs(x = "Residuals",
 subtitle = "The observed residual distribution
 and a Normal distribution with mean 0 and SD of 425") +

 theme_minimal() +
 theme(axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 axis.title.y = element_blank(),
 plot.subtitle = element_markdown())

figd <- cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 mutate(yhat = fitted(m1),
 resid = resid(m1)) %>%
 ggplot(aes(height.T1, resid)) + geom_point() + theme_minimal() +
 labs(y = "Residuals", x = "Height (cm)")

plot_grid(figa, figb, figc, figd, ncol = 2, labs = c("A", "B", "C", "D"))

[image:]

Figure 12.6: An analysis of the model fit. In A we do have a pattern indicating a linear relationship between Height and VO2max. In B we visualize each observation together with its estimated value and the distance between the two (residuals). The residuals (c) are approximately normal, although we do not have a lot of data to really be confident. Finnaly we plot the distance between observed and estimated values against the predictor, we are approximately equally wrong along all values of Height (although we do not have a lot of data to really be confident)

12.2.1 Checking our assumptions

Linear relationship

A plot (e.g. Figure 12.6) can be used to see if the relationship is generally linear. We do not have that many data points, but a curve-linear relationship is not evident.

Normal residuals

To check if the residuals are normal (like Figure 12.6 C suggests), we can create a plot that plot every observed residual against its theoretical position in a normal distribution. This is a quantile-quantile plot. To show the concept we may sample data from a normal distribution and plot it against the theoretical quantile (Figure 12.7).

Show the code
set.seed(1)
ggplot(data.frame(y = rnorm(100, 0, 1)), aes(sample = y)) +
 stat_qq(size = 3, fill = "lightblue", shape = 21) +
 stat_qq_line() +
 labs(x = "Theoretical Quantiles",
 y = "Sample Quantiles") +
 theme_minimal()

[image:]

Figure 12.7: An example of a quantile-quantile plot (qq-plot)

The code above samples 100 observations. They are plotted against their “theoretical values”. If the values (points) follows the straight line, we have data that follows a normal distribution. The same can be assessed from our fitted model (Figure 12.8).

Show the code
cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 mutate(resid = resid(m1),
 st.resid = resid/sd(resid)) %>%
 ggplot(aes(sample = st.resid)) +
 stat_qq(size = 3, fill = "lightblue", shape = 21) +
 stat_qq_line() +
 theme_minimal()

[image:]

Figure 12.8: A qq-plot constructed from the residuals of our model

The resulting plot looks ok. Except from one or two observation, the residuals follows what could be expected from a normal distribution2. This corresponds to our overlay in Figure 12.6 C. The qq-plot is however a more formal way of assessing the assumption of normally distributed errors.

[image:]

Figure 12.9: A normal distribution with about 95% of the area highlighted.

Constant variance

This assumption can be checked by creating a residual plot (e.g. Figure 12.6 D). We will do a variation of this plot below by hand to see how it works. The model is fitted and stored in the object m1. From this object we can use the residuals() function to get every residual. We can add this data to the data set by creating a new variable called resid. It is common practice to plot the residuals against the fitted values. We can get the fitted values using the fitted(), these are the predicted values from the model.

We will plot the fitted values against the residuals. If the model is equally wrong all along the fitted values (or the predictor values as in Figure 12.6 D), we have homoscedasticity. The residual plot should not show any obvious patterns.

Show the code
data.frame(resid = resid(m1),
 fitted = fitted(m1)) %>%
 ggplot(aes(fitted, resid)) +

 labs(x = "Fitted values",
 y = "Raw Residuals") +

 geom_hline(yintercept = 0) +
 geom_point(size = 3, fill = "steelblue", shape = 21) +
 theme_minimal()

[image:]

Figure 12.10: Residuals plotted against the fitted values from our model of VO2max against Height

Sometimes you will see standardized residuals. This is the residual divided by the standard deviation of the residual. We can create this standardization like this:

Show the code
data.frame(resid = resid(m1),
 fitted = fitted(m1)) %>%
 mutate(st.resid = resid/sd(resid)) %>%
 ggplot(aes(fitted, st.resid)) +

 labs(x = "Fitted values",
 y = "Standardized Residuals") +

 geom_hline(yintercept = 0) +
 geom_point(size = 3, fill = "lightblue", shape = 21) +
 theme_minimal()

[image:]

Figure 12.11: Standradized residuals plotted against the fitted values from our model of VO2max against Height

Looking at the plot (Figure 12.11) tells us that observation with the largest error is about 2.5 standard deviation away from its predicted value. We are suffering a bit from having a small amount of data here. But the residual plot does not invalidate the regression model.

12.3 Check the results

To examine the results of the analysis we can use the summary() function.

summary(m1)

Call:
lm(formula = VO2.max ~ height.T1, data = cyc_select)

Residuals:
 Min 1Q Median 3Q Max
-619.99 -279.54 -32.56 181.82 1109.81

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2596.26 2936.51 -0.884 0.3883
height.T1 41.10 16.37 2.511 0.0218 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 436.8 on 18 degrees of freedom
Multiple R-squared: 0.2594, Adjusted R-squared: 0.2183
F-statistic: 6.306 on 1 and 18 DF, p-value: 0.02179

The output (see above) will show you the following things:

	Call: this summary contains your instructions to R.

	Residuals: which contains the minimum, maximum, median and quartiles of the residuals. The tails should be approximately similar above and below the median.

	Coefficients: contains the estimates and their standard errors. As we have fitted a univariate model, we only see the increase in VO2max with every unit increase of height.T1 and the intercept.

	Residual standard error: Tells us the variation in the error on the scale of the outcome variable. As mentioned above this is very similar to calculating the standard deviation of the residual. The difference is that it takes into account that we have estimated other parameters in the model.

	R-squared and additional statistics: shows the general fit of the model, the R-squared value is a value between 0 and 1 where 1 indicates that the model fits the data perfectly (imagine all observations correspionding to what the model predicts).

12.4 Interpreting the results

From our model we can predict that a participant with a height of 175 cm will have a VO2max of 4597 ml min-1. We can do this prediction by combining the intercept and the slope multiplied with 175. We remember the equation for our model:

yi=β0+β1xiVO2max=−2596.3+41.1×175VO2max=4597\begin{align}
y_i &= \beta_0 + \beta_1x_i \\
\text{VO}_{2\text{max}} &= -2596.3 + 41.1 \times 175 \\
\text{VO}_{2\text{max}} &= 4597
\end{align}

We can use coef() to get the coefficients from the model. To make the above prediction we can use the following R code coef(m1)[1] + coef(m1)[2]*175. Using confint() we will get confidence intervals for all parameters in a linear model.

We will talk more about confidence intervals, t-values and p-values in later chapters. For now, a small introduction may be enough. The confidence interval can be used for hypothesis testing, so can also p-values from the summary table. The p-values tests against the null-hypothesis that the intercept and slope are 0. What does that mean in the case of the intercept in our model? The estimated intercept is -2596 meaning that when height is 0 the VO2max is -2596. We are very uncertain about this estimate as the confidence interval goes from -8766 to 3573. We cannot reject the null. Think a minute about what information this test gives us..

The slope estimate has a confidence interval that goes from 6.7 to 75.5 which means that we may reject the null-hypothesis at the 5% level. The hypothesis test of the slope similarly test against the null-hypothesis that VO2max does not increase with height. Since our best guess (the confidence interval) does not contain zero, we can reject the null hypothesis.

12.5 Do problematic observations matter?

In the residual plot we could identify at least one potentially problematic observation. We can label observations in the residual plot to find out what observation is problematic.

Show the code
cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 mutate(st.resid = resid(m1)/sd(resid(m1)),
 fitted = fitted(m1)) %>%
 ggplot(aes(fitted, st.resid, label = subject)) +
 geom_hline(yintercept = 0) +
 geom_point(size = 3, fill = "lightblue", shape = 21) +
 geom_label(nudge_x = 25, nudge_y = 0) +

 labs(x = "Fitted values",
 y = "Standardized Residuals") +

 theme_minimal()

[image:]

Figure 12.12: Standradized residuals plotted against the fitted values from our model of VO2max against Height

The plot shows that participant 5 has the largest distance between observed and predicted values. If we would fit the model without the potentially problematic observation we can see if this changes the conclusion of the analysis.

cyclingstudy_reduced <- cyclingstudy %>%
 filter(timepoint == "pre",
 subject != 5) %>%
 select(subject, group, VO2.max, height.T1)

m1_reduced <- lm(VO2.max ~ height.T1, data = cyclingstudy_reduced)

delta_beta <- 100 * ((coef(m1_reduced)[2]/coef(m1)[2]) - 1)

The delta_beta above calculates the percentage change in the slope as a consequence of removing the observation with the greatest residual. The slope changes 13% when we remove the potentially problematic observation. This might be of importance in your analysis. Another way to look for influential data points would be to check the scatter plot.

Show the code
cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 ggplot(aes(height.T1, VO2.max, label = subject)) +
 geom_smooth(method = "lm", se = FALSE) +
 geom_point(size = 3, fill = "lightblue", shape = 21) +
 labs(x = "Height (cm)",
 y = expression("VO"["2max"]~(ml^-1~min^-1))) +
 geom_label(nudge_x = 1, nudge_y = 0) +
 theme_minimal()

[image:]

Figure 12.13: Scatter plot with labelled data points.

The plot will show participant 5 has not got a lot of “weight” in the slope. If an equally big residual would have been present in the far end of the range of the height variable, removing it would have made more difference. Since the observation is in the middle of the perdictor variable, it wont be that influential.

There are many ways of doing diagnostics for the ordinary linear model in R. The simplest way is to write plot(m1), this will produce four graphs.

	Residuals vs. Fitted shows the fitted (or predicted) values against the residuals. If we would have tried to fit a linear trend to curve linear data, we would have catch it here. We want equal spread all along the fitted values. We test the assumption of homoscedasticity and linear trend.

	Normal Q-Q shows residual theoretical quantiles against the observed quantile. The points should to a large degree be on, or close to the line. We test the assumption of normality in the residuals.

	Scale location similarly to the residual plot, we can assess assumptions of heteroscedasticity and if we find the trend in the data. We are looking for a straight, flat line and points equally scattered around it.

	Residual vs. Leverage is good to find influential data points. If a point is outside the dashed line it changes the conclusion of the regression to a large degree. Remember that we identified participant 5 as a potential problematic case. The Residual vs. leverage shows that number 5 has a large residual value but no leverage, meaning that it does not change the slope of the regression line.

[image:]

12.6 A more intepretable model

The intercept in model m1 is interpreted as the VO2max when height is zero. We do not have any participants with height zero nor will we ever have. A nice modification to the model would be if could get the intercept to tell us something useful. We could get the model to tell us the VO2max in the tallest or shortest participant by setting them to zero. Even more interesting would be to get the VO2max at the average height.

We accomplish this by mean centring the height variable. We remove the mean from all observations, this will put the intercept at the mean of heights as the mean will be zero.

cyc_select <- cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height.T1) %>%
 mutate(height.mc = height.T1 - mean(height.T1)) # mean centering the height variable

m2 <- lm(VO2.max ~ height.mc, data = cyc_select)

Examine the fit, what happens to the coefficients? The slope is the same, this means that our model estimates the same increase in VO2max for every unit increase in height. The intercept has changed, instead of giving us the estimated VO2max when the measured height is 0 we get the estimated VO2max when the measured height is at its mean. That might be a more interpretable quantity.

12.6.1 A note about printing the regression tables

We might want to print the regression table (coefficients) in our reports. To do this in a nice way we might want to format the output a bit. This can be done using a package called broom. broom is not part of the tidyverse so you might need to install it. The package has a function called tidy that takes model objects and formats it into nice data frames that are more easy to work with. Together with the gt package we can create tables for use in the report. The function gt makes nice tables with some arguments to format the table.

library(gt); library(broom)

tidy(m1) %>%
 gt() %>%
 fmt_auto()

Table 12.1: A partly formatted regression table

	term
	estimate
	std.error
	statistic
	p.value

	(Intercept)
	−2,596.261
	2,936.508
	−0.884
	0.388

	height.T1
	    41.105
	   16.369
	 2.511
	0.022

12.7 An exercise

We think that body dimensions influence physiological characteristics. To test if if the stature (height.T1) influence maximum ventilatory capacity (VE.max) fit a regression model, check model assumptions and interpret the results.

Show a possible solution
Load data

cyc_select <- cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VE.max, height.T1) %>%
 mutate(height.mc = height.T1 - mean(height.T1)) # mean centering the height variable

fitting the model
m1_ve <- lm(VE.max ~ height.mc, data = cyc_select)

Check assumptions
plot(m1_ve)

Check coefficients
summary(m1_ve)

Get confidence intervals
confint(m1_ve)

1. Chapter 5 in (Spiegelhalter 2019) serves as a very good introduction to regression. There are several texts on Regression, Navarro provides a nice introduction with references to R in Learning statistics with R, Chapter 15.

2. What is normal? A normal distribution is described with a mean and a standard deviation. The distribution is bell shaped and about 95% of the distribution can be found 2 standard deviations above and below the centre (mean) of the distribution.

13 Linear and curve-linear relationships, and predictions

In the previous chapter we looked at straight line relationships. Many things in life are not straight. In this chapter we will add curve-linear relationships to our repertoire. But we will start by predicting values.

13.1 Predicting from data

Because of the relationship between inner dimensions (such as the heart chambers) and our height, we might expect to see a relationship between body height and VO2max. The idea is that we will build a model and use this model to make predictions of our outcome with new data. Later we will hopefully see that this is one of the many benefits of the powerful regression model technique.

As a first step, it is a good idea to get a visual representation of the prospective model. In the code chunk below we load the cyclingstudy data set from the exscidata package together with loading tidyverse. We then plot the relationship between height and VO2.max. In the ggplot call, a good starting point is to use geom_point together with geom_smooth which will produce a scatter plot with a best fit line. Notice that method = "lm" and se = FALSE are being used to make sure you get a straight line (method = "lm") and no confidence bands (se = FALSE). Copy the code into your own document and run the code.

library(tidyverse)
library(exscidata)
data("cyclingstudy")

A simple plot of the association
cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height = height.T1) %>%

 ggplot(aes(height, VO2.max)) + geom_point() + geom_smooth(method = "lm", se = FALSE)

We will now construct the model. The lm function (for linear model) take a formula and a data set in its simplest form. We have to save the output of the model in an object to be able to work with it down the line. In the code below I suggest storing the model object as m1.

Store the data set needed in the model fitting
dat <- cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height = height.T1) %>%
 print()

Fit the model
m1 <- lm(VO2.max ~ height, data = dat)

The above code will store an object in your environment. Using this object, we may now make predictions. The manual way of making a prediction would be to get the coefficients from the model and use them with new data. In the code chunk below, I retrieve coefficients from the model representing the intercept and slope of the model. Remembering the basic mathematics of this simple model tells us that we can predict VO2max using the estimates from the model. These estimates can be retrieved using coef(). The intercept will be the first coefficient (coef(m1)[1]), and the slope will be the second (coef(m1)[2]). Adding them together and multiplying the slope with our new data will get us the prediction.

new_height <- 185

prediction <- coef(m1)[1] + coef(m1)[2] * new_height

R has some built-in functions for this kind of operation. We can use the predict function to calculate what each observation would look like if it were “on the regression line.” Using predict on the model without new data will give you the same values as the fitted function; try it out!

Store output
pred <- predict(m1)
fit <- fitted(m1)

Plot the values
data.frame(pred, fit) %>%
 ggplot(aes(pred, fit)) + geom_point()

predict has an argument called newdata; here we can use a new data frame with the same predictors as in the data set used to fit the model. We may use this new data set to make several predictions from our model.

New Data Frame containing data we want to predict with
ndf <- data.frame(height = c(160, 170, 180, 190))

predictions <- predict(m1, newdata = ndf)

Unsurprisingly, an increased height gives us higher predictions of VO2max. What would be your VO2max given this model?

13.2 Uncertanties in predictions

When we are interested in a model’s ability to predict values from new data, we might also be interested in a range of plausible values for our prediction. A prediction interval can be constructed based on the model to tell us where we can expect future observations with a specified level of certainty. The prediction interval has a definition that might be difficult to understand. In short, if we construct infinitely many models and 95% prediction intervals, 95% of the prediction intervals will contain the true value for a future predicted observation.

If we relax the mathematical and philosophical rigour, we can regard the prediction interval as an interval of plausible values for individual observations based on the model. The prediction interval accounts for uncertainty in the predicted mean and the uncertainty associated with individual observations.

Let us visualize the prediction interval. The predict function can help us again. We will create a data frame with predicted values over the whole range of observed values in the data set. seq(from = min(dat$height) to = max(dat$height)) creates a sequence of values that goes from the minimum in the data to the maximum. We will then use geom_ribbon to plot them together with the observed data. Notice that we must transform the predicted values into a data frame and include the variables to match our original ggplot2 call.

Create predictions based on min to max observed height values
pred.vals <- predict(m1,
 newdata = data.frame(height = seq(from = min(dat$height),
 to = max(dat$height))),
 interval = "predict") %>%
 ## Transform to a data frame and add variables to correspond to our data set `dat`
 data.frame() %>%
 mutate(VO2.max = fit,
 height = seq(from = min(dat$height), to = max(dat$height)))

Plot the data and prediction intervals
cyclingstudy %>%
 filter(timepoint == "pre") %>%
 select(subject, group, VO2.max, height = height.T1) %>%

 ggplot(aes(height, VO2.max)) +
 geom_ribbon(data = pred.vals, # We need new data for this layer
 aes(ymin = lwr, ymax = upr), # Add lower and upper bounds
 fill = "steelblue", # Fill with a nice color
 alpha = 0.2) + # Make the fill "transparent"
 geom_point() + # Add observed points from the original data set
 geom_smooth(method = "lm", se = FALSE)

Is the model any good? Well, a true value might as well be about 20% higher or lower than the prediction based on body height. It is up to us to consider if this is a good model for predicting VO2max.

To check
pred.vals %>%
 mutate(upr = upr/fit ,
 lwr = lwr/fit) %>%
 print()

13.3 The workload-lactate relationship

In the cyclingstudy data set, data from lactate threshold tests are recorded for each participant. We need to “wrangle” the data set a bit to get the data in a format more suitable for analysis. In the code below I will first select columns needed for the analyses and the filter to retain one participant and one time-point. These data are then converted from a wide to long (tidy) format using the pivot_longer function. Notice that each of the lactate columns starts with lac., this information can be used in pivot_longer when rearranging the data. In pivot_longer we also convert the values to numeric values using as.numeric. Finally, we plot the data.

The resulting plot (also shown below), shows a point for every lactate measurement. We have also connected the dots with geom_line which draws straight lines between each point. The straight line can be used to interpolate values between the observed lactate values. This is a common technique to calculate a lactate threshold, often defined as the intensity at 4 mmol L-1.

 ch014.xhtml

14 Categorical predictors and multiple regression

We have up to now used a single continuous predictor to predict a dependent variables. We will now show that the ordinary regression models can be extended and modified to perform statistical tests such as the t-test. The ordinary regression model is very flexible!

14.1 Linear models can be used instead of t-tests

t-test are designed to compare means. A question you might want to answer using a t-test is how unlikely the results from your test is if there were no true differences between values from two groups (independent t-test), or two samples from the same individuals (paired sample t-test) or comparing a group to a specific value (one sample t-test). Another way of describing these tests are; tests of differences from zero in a one-sample case or differences between groups with paired or unpaired observations.

We can perform t-tests on data from the cyclingstudy data set. In the code below we will select the variable squat jump and filter it from two time-points. pivot_wider is used to put squat jump performance from the two time-points in separate columns. A change score is then calculated.

library(tidyverse)
library(exscidata)

cyc_select <- cyclingstudy %>%
 # select a subset of variables, squat jump max is the outcome of interest.
 select(subject, timepoint, sj.max) %>%
 # time-points of interest
 filter(timepoint %in% c("pre", "meso3")) %>%
 # spread the data based on time-points
 pivot_wider(names_from = timepoint,
 values_from = sj.max) %>%
 # create a change score
 mutate(change = meso3 - pre)

The data above may be used to perform the paired sample t-test, or one sample t-test. These are basically equivalent. In the first case we use both vectors of numbers and test if the difference between them are different from zero. In the other case we calculate the differences first and then test if the mean change-score is different from zero. In the paired sample t-test, the argument paired = TRUE must be added to the t.testcall to make sure you do a paired comparison. In the one-sample case we have to set the mean we want to compare to, in this case zero (mu = 0).

paired <- t.test(cyc_select$meso3, cyc_select$pre, paired = TRUE)
one_sample <- t.test(cyc_select$change, mu = 0)

These tests are equal as we can see from the comparison below. They are also equivalent to a linear model where we simply model the mean of the change score. When fitting the change variable without any predictors we estimate a single parameter in our model, the intercept. The intercept coefficient can be used to test against the same null-hypothesis (change not different from zero), the same results will appear. We can add all result to the same table (Table 14.1).

linear_model <- lm(change ~ 1, data = cyc_select)

library(gt)

data.frame(test = c("Paired sample t-test", "One sample t-test", "Linear model"),
 t.value = c(paired$statistic, one_sample$statistic, coef(summary(linear_model))[1, 3]),
 p.value = c(paired$p.value, one_sample$p.value, coef(summary(linear_model))[1, 4]),
 estimate = c(paired$estimate, one_sample$estimate, coef(summary(linear_model))[1, 1]),
 lwr.ci = c(paired$conf.int[1], one_sample$conf.int[1], confint(linear_model)[1]),
 upr.ci = c(paired$conf.int[2], one_sample$conf.int[2], confint(linear_model)[2]),
 se = c(paired$stderr, one_sample$stderr, coef(summary(linear_model))[1, 2])) %>%
 tibble() %>%

 gt() %>%
 fmt_auto() %>%
 cols_label(test = "Test", t.value = md("*t*-value"), p.value = md("*p*-value"), estimate = "Estimate", lwr.ci = "Lower CI", upr.ci = "Upper CI", se = "Standard error")

Table 14.1: Comparing a paired sample t-test, one sample t-testa and a linear regression model

	Test
	t-value

	p-value

	Estimate
	Lower CI
	Upper CI
	Standard error

	Paired sample t-test
	−1.788
	0.091
	−0.891
	−1.938
	0.156
	0.498

	One sample t-test
	−1.788
	0.091
	−0.891
	−1.938
	0.156
	0.498

	Linear model
	−1.788
	0.091
	−0.891
	−1.938
	0.156
	0.498

We can also test if there is a true difference in VO2.max change between group INCRand DECR using a t-test.

cyc_select <- cyclingstudy %>%
 # Select appropriate variables and filter time-points
 select(subject,group, timepoint, VO2.max) %>%
 filter(timepoint %in% c("pre", "meso3"),
 group != "MIX") %>%
 # make the data set wider and calculate a change score (%-change).
 pivot_wider(names_from = timepoint,
 values_from = VO2.max) %>%
 mutate(change = meso3-pre) %>%
 print()

A tibble: 14 × 5
 subject group pre meso3 change
 <dbl> <chr> <dbl> <dbl> <dbl>
 1 1 INCR 5629 5330 -299
 2 2 DECR 4471 4886 415
 3 3 INCR 5598. 6380 782.
 4 4 DECR 4944. 5171 227.
 5 5 DECR 5748 NA NA
 6 6 INCR 4633. 4864 231.
 7 10 INCR 5226 5755 529
 8 13 DECR 4981. 5045 63.6
 9 15 INCR 4486 4991 505
10 16 INCR 4604 5087 483
11 18 DECR 5135. 5315 180.
12 19 DECR 4018. 4404 386.
13 20 INCR 4739 5119 380
14 21 DECR 4753. 4730 -22.5

Perform a two-sample t-test
t.test(change ~ group, data = cyc_select, var.equal = TRUE)

 Two Sample t-test

data: change by group
t = -1.0703, df = 11, p-value = 0.3074
alternative hypothesis: true difference in means between group DECR and group INCR is not equal to 0
95 percent confidence interval:
 -503.6842 174.0833
sample estimates:
mean in group DECR mean in group INCR
 208.2119 373.0123

Above we use the formula method to specify the t-test (see ?t.test). var.equal = TRUE tells the t.test function to assume equal variances between groups.

The same result will appear when we fit the data to a linear model. The summary function is a generic function, meaning that many type of R objects has summary methods. From summary we get a regression table of estimates. The first row is the intercept, we can interpret this as the mean change in one of the groups (DECR). This rows has all the statistics associated with this estimate including the average (Estimate), standard error, t-value and a p-value.

The second row represents the difference between groups. The INCR group has a change score that is 164.8 units larger than the DECR group. The associated statistics can be used to assess if this difference is large enough to declare surprisingly large if the null hypothesis is actually true.

lin_mod <- lm(change ~ group, data = cyc_select)

summary(lin_mod)

Call:
lm(formula = change ~ group, data = cyc_select)

Residuals:
 Min 1Q Median 3Q Max
-672.01 -141.94 18.76 155.99 409.00

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 208.2 113.0 1.843 0.0924 .
groupINCR 164.8 154.0 1.070 0.3074

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 276.7 on 11 degrees of freedom
 (1 observation deleted due to missingness)
Multiple R-squared: 0.09433, Adjusted R-squared: 0.01199
F-statistic: 1.146 on 1 and 11 DF, p-value: 0.3074

If you compare the two tests, do they tell you the same?

Using var.equal = TRUE in the unpaired t-test we assumed that the variation was similar in both groups. This might not be the case, and R uses the Welch two-sample t-test by default which does not assumes equal variance between groups. Even the Welch two sample t-test can be replicated using a linear model. However, we have to specify it in a slightly different framework using the gls() function from the nlme package.

library(nlme)

welch_twosample <- t.test(change ~ group, data = cyc_select, var.equal = FALSE)

lin_mod_var <- gls(change ~ group, data = cyc_select, weights = varIdent(form = ~1|group), na.action = na.exclude, method = "ML")

welch_twosample
summary(lin_mod_var)

You are not required to master gls at this time. It however shows that the linear model frame work is very flexible as it in this case also can be adjusted to take care of heteroscedasticity.

14.2 Dummy variables

The group variable that we used in the code above introduces something new to the linear model, namely dummy variables. When we put a categorical variable in the lm command, R will code it as a dummy variable. This variable will be zero if the group corresponds to the first level of the categorical variable (coded as a factor variable) and it will be 1 if it is the second level.

In the simplest case (as above) we will get a linear model looking like this:

yi=β0+β1xiy_i = \beta_0 + \beta_1x_i

Where the xx is the grouping variable and set to 0 when we have the reference group and 1 when we have the second level group. The coefficient β1\beta_1 only kicks in if the group is 1. This also means that when group = 0, yy corresponds to the intercept of the model. If group = 1 we have the intercept + the slope. The slope represents the difference between the intercept (group = 0) and group = 1.

If the grouping variable would have more groups more dummy-variables would have been added by R to create several comparisons between the reference group and compared levels of the variable.

14.2.1 An exercise

Using all groups in the data set, fit a model and interpret the results.

A possible solution
cyc_subset <- cyclingstudy %>%
 select(subject,group, timepoint, VO2.max) %>%
 filter(timepoint %in% c("pre", "meso3")) %>%
 pivot_wider(names_from = timepoint,
 values_from = VO2.max) %>%
 mutate(change = 100 * (meso3-pre)/pre) %>%
 print()

mod <- lm(change ~ group, data = cyc_subset)

summary(mod)

The `DECR` group is the reference group, the intercept shows the mean of this group. Each parameter shows the difference from the reference.

The same assumptions are made with these kinds of models and they can be checked with the same methods as described above.

14.3 Multiple regression

Contrary to the t-tests used above, the linear model can be extended by adding predicting variables (independent variables). In a situation where multiple independent variables are included in the model, we control for their relationship to the dependent variable when we evaluate the other variables. Similarly with univariate regression we can examine each individual parameter from the summary.

In a previous example we used height.T1 to predict VO2.max. We might want to add information to the model. We might wonder if the age (age) of participants have a relationship with VO2max. To fit this model, use the code below.

cycling_data <- cyclingstudy %>%
 # select(subject, timepoint, VO2.max, weight.T1, height.T1) %>%
 filter(timepoint == "pre") %>%
 print()

mod1 <- lm(VO2.max ~ height.T1 + age, data = cycling_data)

summary(mod1)

From the output we can see that there is a negative relationship, when age increases VO2max decrease. We can compare this model to the simpler model by looking at the R2R^2 value. We fit the simpler model.

mod0 <- lm(VO2.max ~ height.T1, data = cycling_data)

summary(mod0)

We can interpret R2R^2 as the percentage of the variation explained by the model. When we added more variables to the model we add information that collectively explain a larger portion of the observed data. When adding variables we face the risk of over-fitting our model. With enough variables the model will explain the observed data with less and less uncertainty, however, new data will probably not validate the model.

The same assumptions apply to the multiple regression model as with the univariate regression model. We have to take care that we have homoscedasticity, independent observations and normally distributed errors.

 ch015.xhtml

15 Correlations

We are already familiar with the regression model. We will now take a step back, to the correlation. A correlation is a unit-less measure of the relationship between two variables. The strength of the relationship is expressed between -1 and 1 where values closer to 0 indicate weaker relationship.

Using the data set provided by Haun et al. 2019 we will see how the correlation works. First we will load the data and select the variables SQUAT_VOLUME and DXA_LBM_T1. A reasonable interpretation of these variables are that SQUAT_VOLUME is the pre-intervention training volume and DXA_LBM_T1 is the percentage lean body mass before the intervention. To make the data more readable we will scale the squat volume from kg to tons:

Code
library(tidyverse)
library(exscidata)

dat <- hypertrophy %>%
 select(PARTICIPANT, SQUAT_VOLUME, BODYMASS_T1, DXA_LBM_T1) %>%
 mutate(SQUAT_VOLUME = (SQUAT_VOLUME/1000))

A basic question given these kind of data is, do participants with more previous training volume have more muscle mass (lean mass)? We can assess this by the performing a correlation analysis. The cor function gives the correlation coefficient from two variables. Notice that we need to specify use = "complete.obs" to remove observations without both variables recorded.

cor(dat$SQUAT_VOLUME, dat$DXA_LBM_T1, use = "complete.obs")

[1] 0.5210417

The value is quite high, around 0.5. Remember that a perfect correlation is either 1 or -1 and 0 indicates no correlation between variables. The correlation coefficient is not sensitive to the order of variables:

cor(datDXA_LBM_T1, datSQUAT_VOLUME, use = "complete.obs")

[1] 0.5210417

We can use the correlation coefficients to draw inference. A test against the null hypothesis of no correlation, H0:r=0H_0: r=0, can be done in R using the cor.test function.

cor.test(datDXA_LBM_T1, datSQUAT_VOLUME, use = "complete.obs")

 Pearson's product-moment correlation

data: dat$DXA_LBM_T1 and dat$SQUAT_VOLUME
t = 3.2302, df = 28, p-value = 0.003154
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.1979263 0.7420220
sample estimates:
 cor
0.5210417

From this function we get a t-value, the degrees of freedom, a p-value and a confidence interval. The p-value is quite small and the 95% confidence interval does not contain the null-hypothesis. Based on our sample, it is reasonably to believe that lean body mass and training volume are correlated also in the population from which we hav drawn our sample.

15.1 Always plot the data!

When doing a correlation analysis you are at risk of drawing conclusions based on wonky data. A single data point can for example inflate a correlation in a small data set. Lets look at the data we are using now (Figure 15.1).

Code
dat %>%
 ggplot(aes(SQUAT_VOLUME, DXA_LBM_T1)) + geom_point() + theme_minimal()

[image:]

Figure 15.1: A figure showing the relationship between training volume and lean mass

The figure displays no apparent curve-linear relationship, there are no obvious outliers, both variables are evenly distributed (normally distributed). These are assumptions concerning the correlation analysis. Since they are reasonably met, our test above still holds.

15.2 Extending the correlation to the regression

All good! We have a test that tells us a measure of the strength of relationship between two variables. If we want more detailed information we need to move to a regression analysis.

First some similarities. Notice that the p-value for the regression coefficient for squat volume is (almost) precisely the same as the p-value for the correlation analysis!

Store the correlation analysis in an object
c <- cor.test(datDXA_LBM_T1, datSQUAT_VOLUME)
store the regression model
m <- lm(DXA_LBM_T1 ~ SQUAT_VOLUME, data = dat)

Display the p-value for the regression coefficient
coef(summary(m))[2, 4]

[1] 0.003154061

Display the p-value for the correlation coefficient
c$p.value

[1] 0.003154061

Also notice that the R2R^2 value in the regression model is the same as the squared correlation coefficient. Remember that the R2R^2 in the regression model is the degree to which the model account for the data (Navarro 2020), also see here.

summary(m)$r.squared

[1] 0.2714845

c$estimate^2

 cor
0.2714845

These similarities arise from the fact that they are the same analysis, the degree to which the two variables co-varies.

The additional benefit of using a regression analysis comes from the interpretation of the regression coefficient estimates. In our example we can see that increasing the weekly volume with one ton increases percentage lean mass by 0.283%-points. The confidence interval is given on the same scale and can be retrieved by using the code below:

confint(m)

This shows that the true value could be as low as 0.1 and as high as 0.46. Something that again indicates that the two variables vary together.

15.3 Correlation comes in many forms

If you look at the help pages for cor (?cor) you will see that you may specify the type of correlation used for analysis. Commonly used are Pearson’s (default) and Spearman’s correlation coefficient. The difference between these two is that the Spearman’s correlation coefficient does not assume normally distributed data. This is basically a correlation of ranks. The highest number in a series of numbers will have the highest rank and the smallest will be given the lowest (= 1).

We can prove this! The rank function gives a ranking to each number. We first panel of our figure (Figure 15.2) the data as raw continuous values and the second transfomed to ranks.

Code
library(cowplot)

raw <- dat %>%
 ggplot(aes(SQUAT_VOLUME, DXA_LBM_T1)) + geom_point() + theme_minimal()

rank <- dat %>%
 ggplot(aes(rank(SQUAT_VOLUME),
 rank(DXA_LBM_T1))) + geom_point() + theme_minimal()

plot_grid(raw, rank, labels = c("A", "B"))

[image:]

Figure 15.2: Two figure showing the relationship between training volume and lean mass either in raw units (A) or transformed to ranks (B)

We can see in the figure that the relationship persist after rank transformation.

To use the Spearman’s correlation coefficient we specify "spearman" in the cor.test function.

cor.test(dat$SQUAT_VOLUME, dat$DXA_LBM_T1, method = "spearman")

 Spearman's rank correlation rho

data: dat$SQUAT_VOLUME and dat$DXA_LBM_T1
S = 2167.4, p-value = 0.00338
alternative hypothesis: true rho is not equal to 0
sample estimates:
 rho
0.5178259

To see that this is similar to using Pearson’s correlation coefficient with ranked data.

cor.test(rank(dat$SQUAT_VOLUME, na.last = NA), rank(dat$DXA_LBM_T1, na.last = NA),
 method = "pearson")

The p-values are identical. Success! Another statistical mystery unlocked!

In this case the interpretation of tests using ranked data and un-transformed data are very similar. When do we use the rank based correlation? In cases when assumptions for the Pearson correlation are not met, a rank based correlation will protect us from making bad decisions. When, for example, a single data point “drives” a correlation, the the rank-based correlation (Spearman’s) will be less likely to suggest a strong relationship in the population from where we drew our sample.

15.4 Statistical and subject-matter interpretations

It is now very important to stop and think about the estimates that we arrived to above. We have concluded that lean body mass correlate quite well with squat volume calculated as the amount of weight lifted per week. Does this mean that individuals that exercise with higher volumes have more muscle? Perhaps, but could it also mean that individuals that are taller and heavier work out with greater resistance? Perhaps. In any case, the correlation (and regression) analysis of snap-shot observational data can trick us into believing that the mathematical relationship also indicate a causal relationship. We have to thread carefully when interpreting associations (Spiegelhalter 2019, chaps. 2, 4 and 5), this is were your subject-matter knowledge is handy.

15.5 Summary

The correlation coefficient has many similarities with a univariate regression model. Correlations measures strength of association, but the regression model comes with benefits in terms of interpretation. The correlation only takes two variables but we can extend the regression model. When we think that data do not match our assumptions we can do correlation analysis using Spearman’s rank correlation to avoid biased estimates of estimation.

 ch016.xhtml

16 Special topics: Iterations and functions

To reduce the number of repetitive tasks performed manually or through copy-and-paste coding, R provides functions and frameworks for iterative operations. The programmer (you), could benefit greatly from building your own functions as these will reduce the risk of making mistakes, make the code more readable and easier to change (Wickham and Grolemund 2017, chap. 19).

16.1 Building a simple function

A function in R is a defined set of operations, put together and often stored as an object to perform a specific task. In R, the user may define his/her own functions. Defining a function usually involves storing the function as an object in your environment. When you have gathered multiple functions relating to common tasks these can be organized as a package.

Let’s say we want to create a function that returns the sum of two values. The function sum_two_values that is defined below, contains the basics of a typical function. In the function() call we define what arguments the function will accept. In our case, a and b represents the two numbers we want to add together. The body of the function is where we define the operations that we want the function to perform. We add a and b together and assign their sum to an object called result. Finally, we pass the result of the function to return(result). Using return makes it explicit what part of the results you want to “get from the function”.

sum_two_values <- function(a, b) {

 result <- a + b

 return(result)
}

sum_two_values(3, 6)

[1] 9

The name of a function is defined by saving the function in an object. When the function is defined in a script or RMarkdown file it is available in the R environment. The difference from packages is that functions defined as part of packages are available when you load the package using library().

16.2 An applied problem where a function might help

Lactate threshold values can be calculated from the exercise-intensity and blood lactate value relationship gathered from a graded exercise test. In the simple case, the exercise intensity at a fixed blood lactate concentration can be used to evaluate training progressions in e.g. athletes. To find the exercise intensity at a fixed blood lactate concentration, a polynomial regression model can be used to predict lactate values at different intensities and the find the exercise intensity value closest to our desiered lactate value.

The above description can be broken down into these steps:

	Fit a third degree polynomial model to exercise-intensity and lactate data from a single individual.

	Predict lactate values over the range of the observed exercise intensity values.

	Find the exercise intensity value closest to the lactate value of interest (e.g. 4 mmol L-1).

Using the cyclingstudy data we can perform these steps. We will do so using the pre time-point in participant 10.

library(tidyverse); library(exscidata); data("cyclingstudy")

Save a data set of lactate values from participant 10, time-point pre
dat <- cyclingstudy %>%
 select(subject, group, timepoint, lac.125:lac.375) %>%
 pivot_longer(names_to = "watt",
 values_to = "lactate",
 names_prefix = "lac.",
 names_transform = list(watt = as.numeric),
 cols = lac.125:lac.375) %>%
 filter(subject == 10,
 timepoint == "pre",
 !is.na(lactate)) %>% # Remove NA values
 print()

Fit the model
model <- lm(lactate ~ watt + I(watt^2) + I(watt^3), data = dat)

Predict lactate values over all observed watt values
calculate the smallest distance from the fixed lactate value

new_data <- data.frame(watt = seq(from = min(dat$watt), to = max(dat$watt), by = 0.1))

new_data$dist <- abs(predict(model, newdata = new_data) - 4)

Find the smallest value of predicted - fixed lacate value
new_data %>%
 filter(dist == min(dist)) # Where the dist value equals the minimum dist value

If we were to do this operation for more participants and across more time-points, we should formalize the operation into a function. In the simplest form, the prospective function would only need an argument defining the input data. We can then settle for a single fixed lactate value. We will define the function and call it lt for lactate threshold. (This might not be the best name! (Wickham and Grolemund 2017)).

If the function returns a data frame, we can use it more efficiently later som we will make sure the result of the function is a data frame.

lt <- function(data) {

 # Fit a 3 degree polynomial model
 m <- lm(lactate ~ watt + I(watt^2) + I(watt^3), data = data)

 # Store a data frame with exercise intensities
 new_data <- data.frame(watt = seq(from = min(data$watt), to = max(data$watt), by = 0.01))

 # Predict using the new data, predicting lactate values at each
 new_data$pred <- predict(m, newdata = new_data)

 # calculate deviation from the lactate value of interest
 new_data$watt.4mmol <- abs(new_data$pred - 4)

 # Create a results data frame
 results <- data.frame(watt.4mmol = new_data[which.min(new_data$watt.4mmol),1])

 # Return the data frame
 return(results)

}

The body of the function contains all operations needed to get the results we are after. It finally returns a data frame containing a single column named watt.4mmol. We can now test the function on some data.

library(tidyverse); library(exscidata); data("cyclingstudy")

Warning: package 'tidyverse' was built under R version 4.4.1

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

data <- cyclingstudy %>%
 select(subject, group, timepoint, lac.125:lac.375) %>%
 pivot_longer(names_to = "watt",
 values_to = "lactate",
 names_prefix = "lac.",
 names_transform = list(watt = as.numeric),
 cols = lac.125:lac.375) %>%
 filter(!is.na(lactate),
 subject == 10,
 timepoint == "pre") %>%
 print()

A tibble: 8 × 5
 subject group timepoint watt lactate
 <dbl> <chr> <chr> <dbl> <dbl>
1 10 INCR pre 125 0.93
2 10 INCR pre 175 0.87
3 10 INCR pre 225 0.86
4 10 INCR pre 250 0.92
5 10 INCR pre 275 1.2
6 10 INCR pre 300 1.69
7 10 INCR pre 325 2.6
8 10 INCR pre 350 4.69

lt(data)

 watt.4mmol
1 342.96

Nice, since we defined the function with higher resolution, we get a exercise intensity value with two decimal points. This value represent the watt value where the predicted lactate value is the closest to 4 mmol L-1.

We still need to incorporate the function into code that dose the calculation for each individual, and time-point without the need of manually filtering values for each new data set. This can be accomplished by using the function in a pipe together with group_by and group_modify.

Since we are using a third degree polynomial we need to make sure we have enough data to fit such a model to each participant/time-point. We will add a variable counting the number of observations and then filter tests with less then 4 observations.

The complete pipe could look something like this.

Extract lactate values
cyclingstudy %>%
 select(subject, group, timepoint, lac.125:lac.375) %>%
 pivot_longer(names_to = "watt",
 values_to = "lactate",
 names_prefix = "lac.",
 names_transform = list(watt = as.numeric),
 cols = lac.125:lac.375) %>%
 # Filter missing lactate values
 filter(!is.na(lactate)) %>%
 # Group the data set, keeping group to have this information in the final results
 group_by(timepoint, subject, group) %>%
 # create a new variable counting the number of observations and filter away tests with less than 4 obs.
 mutate(n = n()) %>%
 filter(n >= 4) %>%
 # Use grouup modify to apply the function to all participants per time-point (and group)
 group_modify(~ lt(.)) %>%
 print()

A tibble: 74 × 4
Groups: timepoint, subject, group [74]
 timepoint subject group watt.4mmol
 <chr> <dbl> <chr> <dbl>
 1 meso1 1 INCR 293.
 2 meso1 2 DECR 286.
 3 meso1 3 INCR 335.
 4 meso1 4 DECR 244.
 5 meso1 5 DECR 332.
 6 meso1 6 INCR 252.
 7 meso1 7 MIX 268.
 8 meso1 8 MIX 294.
 9 meso1 9 MIX 300.
10 meso1 10 INCR 340.
ℹ 64 more rows

Great sucess! We have now calculated lactate threshold values for each participant, belonging to specific time-points and groups. The group_modify function does the iterative work of applying the function for all cases, you have save yourself a lot of code, and time!

16.2.1 Exercises

	Modify the lt function to return two fixed lactate values.

	Modify the lt function to include an extra argument specifying the level of the lactate value you are interested in.

16.3 References

 ch017.xhtml

17 Samples, populations estimates and their uncertainty

Scientific studies only occasionally gather all available data regarding some phenomena under study. All possible data are not available to us due to, e.g., practical or economic reasons. We, therefore, have no direct way of studying all elderly people’s responses to training or the relationship between strength and performance in all cyclists, etc. Thus, the scientist is faced with the challenge to draw conclusion about the world based on a limited set of observations.

All possible observations are often referred to as the population while the data set we have access to is called the sample. When we make claims about the population using a sample, we draw inference. Our ability to accurately draw inference (or conclusions) about the population based on our sample is determined by how we have gathered data. A sample is unbiased when it represents the population. Through random sampling from the population, we can be pretty sure that we, in most cases, have a representative sample free from bias. Bias may be a consequence of some systematic aspect of our sampling scheme, e.g., when studying healthy individuals’ responses to exercise, recruitment to the study may introduce bias as we are more likely to recruit participants who want to do exercise. Possibly, recruited individuals would respond differently compared to individuals not so willing to do exercise (see (Spiegelhalter 2019, Ch. 3).

We can characterize a sample using descriptive statistics. For example, a continuous variable such as V̇O2max can be described based on its central tendency (like the mean, y‾\bar{y}) and variation (standard deviation, sys_y). Such characteristics serves as a simple description of the sample and as estimates of characteristics of the population. These estimates can help us make claims about the population with a specified degree of certainty.

17.1 Reading instructions

Before going further, I suggest reading Chapters 7-10 in Spiegelhalter (Spiegelhalter 2019). These chapters are a great start for understanding the concepts discussed below.

17.2 Descriptive statistics in R

17.2.1 Simulating data in R

R is great because you can create data! In the examples below we will generate data, you can copy and paste the code into your R session to run it and answer questions in this lesson.

When we generate data in R we need to set the seed to make the random number generator create the same numbers every time. Basically, R generate numbers and if we want R to generate the same numbers every time we have to tell R where to start.

This means that before each simulation I will include:

set.seed(1)

The number within set.seed is important as it defines where R starts generating numbers.

17.3 A simple example

Let’s say that we collect data on V̇O2max values in trained cyclists (ml kg-1 min-1). We are interested in the average. First we simulate all possible values:

set.seed(1)
vo2max <- rnorm(100000, 70, 5)

All possible values? Yes, we create a distribution of values of V̇O2max in trained cyclists based on the rnorm-function. rnorm simulates random numbers (100000 in this case) based on an average (in this case 75) and standard deviation (in this case 5). This population is now stored in the object vo2max.

We conduct our study and collect data on 20 participants. This represents only 2% of all possible numbers!

Below we use the sample function, this function draws a sample of a fixed size from our collection of random numbers. We store it in an object called samp

set.seed(1)
samp <- sample(vo2max, 20, replace = FALSE)

replace = FALSE makes sure that we do not sample the same numbers more than once. This way our sampling resembles what an ideal real life study would do.

The samp object now contain numbers from a possible study. The study has recruited 20 randomly chosen cyclists and measured their V̇O2max. Let’s describe the sample.

In R we can describe the data using multiple methods, first we will calculate summary statistics.

m <- mean(samp)
s <- sd(samp)

We can also use the summary function.

summary(samp)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 58.91 65.10 69.88 69.19 74.28 80.36

Let’s make a graph of the sample. We can represent the sample using points across the range of values (Figure 17.1). Ou can use the code below to reproduce the figure.

Code
library(tidyverse) # Needed for making the plot!
df <- data.frame(samp = samp)

df %>%
 # Plots our samples on the x axis, and sets all y to 1.
 ggplot(aes(samp, y = 1)) +
 # Adds points and "jitter" on the y axis
 geom_point(position = position_jitter(height = 0.1)) +
 # Scales the y axis to better plot the data
 scale_y_continuous(limits = c(0,2)) +
 # Set the name of the x axis
 labs(x = "VO2max") +
 # Add a theme
 theme_classic() +
 # The code below modifies the theme of the plot, removing
 # the y axis
 theme(axis.title.y = element_blank(),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 axis.line.y = element_blank())

[image:]

Figure 17.1: A sample of V̇O2max values from well trained cyclists.

Another plot can be the box-plot (Figure 17.2), now also with a more precise axis label. Similarly to the above plot you can reproduce our new figure with the code below.

Code
ggtext must be installed to create the appropriate axis label
library(ggtext)

df %>%
 # Plots our samples on the y axis, and sets all x to 1.
 ggplot(aes(x = 1, samp)) +
 # Adds the boxplot
 geom_boxplot(width = 0.5) +
 # Scales the x axis to better plot the data
 scale_x_continuous(limits = c(0,2)) +
 # Set the name of the y axis
 labs(y = "V̇O~2max~ (ml kg⁻¹ min⁻¹)") +
 theme_classic() +
 # The code below modifies the theme of the plot, removing
 # the x axis
 theme(axis.title.x = element_blank(),
 axis.text.x = element_blank(),
 axis.ticks.x = element_blank(),
 axis.line.x = element_blank(),
 axis.title.y =element_markdown())

[image:]

Figure 17.2: A sample of V̇O2max values from well trained cyclists.

The boxplot (or box-and-whiskers plot (Spiegelhalter 2019, Ch. 2)) summarizes the data and plots the median, the inter-quartile range minimum and maximum, and any outliers.

We can also plot the data as a histogram (Figure 17.3).

Code
df %>%
 # Plots our samples on the y axis, and sets all x to 1.
 ggplot(aes(samp)) +
 # Adds the histogram
 geom_histogram(binwidth = 3, color = "blue", fill = "lightblue") +
 # Set the name of the y axis
 labs(x = "V̇O~2max~ (ml kg⁻¹ min⁻¹)", y = "Count") +
 theme_classic() +
 # The code below modifies the theme of the plot, removing
 # the x axis
 theme(axis.title.x =element_markdown())

[image:]

Figure 17.3: A sample of V̇O2max values from well trained cyclists.

Both the statistical summaries (created with mean, sd and summary) and the plots are descriptive analyses of the sample. We still have not made any claims about the population.

17.4 Inference about the population

When doing a study, we are really interested in what we can say about the population (all possible values). In other words, how we can draw conclusions about the unknown, based on our data. This is were inferential statistics comes in.

As we have an estimate of the mean in the population, we may say that based on our sample we believe the mean is close to mean(samp). It is very likely that the mean in the population is not exactly that. Let’s try another sample:

set.seed(2)
samp2 <- sample(vo2max, 20, replace = FALSE)

Calculate the mean
m2 <- mean(samp2)

c(m, m2)

[1] 69.19015 71.12632

As we can see there is going to be some differences due to the fact that every time we draw a new sample (or conduct another study), we will get a slightly different estimate of the mean. How about the variation:

s2 <- sd(samp2)

Print the results from calculation of SD
c(s, s2)

[1] 6.210114 6.158459

Indeed, slightly different.

We could continue to sample in this way and record every outcome to build a distribution of means. A convenient way to do this is to create a for-loop. This is a basic building block in programming, we tell the computer to do a task multiple times and store the results in a nice format. We will sample with size = 20 and calculate the mean in each loop. The results will be stored in a data frame.

set the seed
set.seed(123)

create the data frame
results <- data.frame(mean = rep(NA, 1000))
The rep function creates a vector full of NA
each NA can be replaced with a mean

Second we build the for loop
for(i in 1:1000){

 results[i, 1] <- mean(sample(x = vo2max, size = 20, replace = FALSE))

}

The results from this process can made into a figure. We will use the histogram to represent the distribution of sample means from our repeated samples.

Code
ggplot(data = results, aes(mean)) +
 geom_histogram(fill = "lightblue", color = "gray40", binwidth = 1) +

 labs(x = "Sample averages of V̇O~2max~ (ml kg⁻¹ min⁻¹)", y = "Count") +

 theme_classic() +

 theme(axis.title.x = element_markdown())

[image:]

Figure 17.4: Multiple sample averages of V̇O2max values from well trained cyclists.

What did just happened? We basically conducted 1000 studies, from each study we calculated the mean and stored them. Most of the means were very close to 70 as we can see in the graph. The distribution of the means is bell-shaped, actually the distribution looks like something that we can call a Normal distribution.

Distributions can be described in different ways depending on what distribution we are takling about. The most commonly used, the normal (or Gaussian) distribution can be described by the mean and the standard deviation.

As the distribution of means is approximately normal we can determine where most of the means are. Let’s say that we are interested in determining a range where 95% of the means can be found. To do this we can use a theoretical distribution created by estimates from the distribution (the mean and standard deviation).

[image:]

Figure 17.5: A theoretical distribution of multiple sample averages of V̇O2max values from well trained cyclists.

95% of all means are under the shaded area! This corresponds to a range of values that can be calculated in R:

lower <- mean(results[,1]) - 1.96 * sd(results[,1])
upper <- mean(results[,1]) + 1.96 * sd(results[,1])

What does this mean? Well, we have drawn 1000 samples from our bag of numbers (representing all possible outcomes). We then calculated the mean of each sample and created a distribution of means. The mean of means is very, very close to the true (population) mean.

Code
cat(paste("True mean:",
 round(mean(vo2max),2),
 "\nMean of the sample distribution: ",
 round(mean(results[,1]),2)))

True mean: 69.99
Mean of the sample distribution: 70.06

We have also calculated a range were 95% of all means are located, we did this by approximating the actual values using the normal distribution. The range that captures 95% of all means goes from 67.88 to 72.23

17.5 Estimation of the sampling distribution

What we have done above is a very theoretical example as we never do 1000 studies in real life. We will never get a distribution of means from many studies. However we can estimate this theoretical distribution of means using a sample!

This is one of the most important concepts in statistics! This means that by doing one study we can estimate the results of doing many studies. This is the basis of frequentist statistics.

17.5.0.1 The standard error of a sample is an approximation of the standard deviation of the sampling distribution

The headline says it all. Basically, using the sample we can calculate the standard deviation, the standard deviation in turn can be used to calculate the standard error. The standard error is an estimate of the standard deviation of the theoretical distribution of means. Let’s see how it works out!

Using R we can simulate this concept. We will create a new set of random samples (or studies) and calculate statistics from them. The results from this simulation can be seen in Figure 17.6.

Code
library(cowplot) # to combine plots

set the seed
set.seed(9)

create the data frame
results <- data.frame(mean = rep(NA, 5000),
 sd = rep(NA, 5000))
The rep function creates a vector full of NA
each NA can be replaced with a mean

Second we build the for loop
for(i in 1:5000){

 samp <- sample(x = vo2max, size = 20, replace = FALSE)

 results[i, 1] <- mean(samp)
 results[i, 2] <- sd(samp)
}

results <- results %>%
 # Calculate the standard error of each sample
 mutate(se = sd/sqrt(20))

Plot the sample averages in a histogram
#
#
p1 <- results %>%
 slice_head(n = 1000) %>% # select the first 1000 rows
 # Make a graph containing estimates and empirical values
 ggplot(aes(mean)) + geom_histogram(binwidth = 0.5,
 fill = "steelblue",
 color = "black") +
 theme_classic() +

 # Add a line representing the standard deviation of the distribution of means
 annotate(geom = "segment",
 y = c(220, 220, 220),
 yend = c(212, 220, 212),
 x = c(mean(results$mean), mean(results$mean), mean(results$mean) + sd(results$mean)),
 xend = c(mean(results$mean), mean(results$mean) + sd(results$mean), mean(results$mean) + sd(results$mean)),
 lty = 1,
 color = "navy",
 size = 1) +

 # Add text to describe SD of sampling distribution
 annotate(geom = "text",
 x = mean(results$mean),
 y = 235,
 hjust = 0,
 label = paste0("SD = ",
 round(sd(results$mean), 2))) +

 coord_cartesian(ylim = c(0, 280)) +

 labs(x = "Sample averages",
 y = "Number of samples")

Create a plot of calculated SE

p2 <- results %>%
 slice_head(n = 1000) %>% # select the first 1000 rows
 ggplot(aes(se)) + geom_histogram(binwidth = 0.08,
 fill = "steelblue",
 color = "black") +
 theme_classic() +

Add text to describe SD of sampling distribution
 annotate(geom = "text",
 x = mean(results$se),
 y = 235,
 hjust = 0,
 label = paste0("Average SE = ",
 round(mean(results$se), 2))) +

 coord_cartesian(ylim = c(0, 280)) +

 labs(x = "Sample Standard Errors",
 y = "Number of samples")

plot_grid(p1, p2, ncol = 2)

[image:]

Figure 17.6: An empirical distribution of multiple sample averages of V̇O2max values from well trained cyclists and the distribution of standard errors.

In the left panel of Figure 17.6, the blue line represents the standard deviation of the distribution of the sample mean. In the right panel we can see the resulting distribution of standard errors from all the samples. The variation (spread) of the sampling distribution corresponds to the long run average of the standard error calculated in each sample. On average, the standard error of the mean is a pretty good estimate of the variation in the distributions of means. The standard error (SE) of the mean is calculated as:

SE=sn\operatorname{SE} = \frac{s}{\sqrt{n}} where ss is the sample standard deviation, nn is the number of observations.

Remember that we can use the standard deviation to calculate a range of values containing, let’s say, 95% of all values in a normal distribution. As we have a way of estimating the standard deviation of the sampling distribution of averages, we can do this by using a single sample. When estimating this range using a sample we create a confidence interval!

17.5.1 A confidence interval for the mean

A confidence interval for the mean based on a sample can be calculated as:

Lower limit=Mean−1.96×SE\text{Lower limit}=\operatorname{Mean} - 1.96 \times \operatorname{SE} Upper limit=Mean+1.96×SE\text{Upper limit}=\operatorname{Mean} + 1.96 \times \operatorname{SE}

(This assumes that we are using the normal distribution).

The interpretation of the confidence interval is that 95% of confidence intervals, created using repeated sampling will contain the population mean. But unfortunately, we do not know if our specific interval do so.

The interpretation follows from the fact that we estimate the variation in the theoretical sampling distribution. Five percent of the time we will be wrong.

To test if the theory is correct, lets calculate confidence intervals from our simulated data and see how many times we catch the true mean.

Code
Create new variables with upper and lower limits of the confidence interval
cis <- results %>%
 # Using the normal distribution
 mutate(lower.limit = mean - 1.96 * sd/sqrt(20),
 upper.limit = mean + 1.96 * sd/sqrt(20)) %>%
 # Test if the true mean is within the limits
 # If the true mean is above the lower limit and below the upper limit then TRUE
 # otherwise FALSE
 mutate(true.mean = if_else(mean(vo2max) > lower.limit & mean(vo2max) < upper.limit,
 TRUE, FALSE))

Plot the data, only plotting 200 data points to make it suitable for every computer

cis[1:200,] %>%
 ggplot(aes(seq(1:nrow(.)),
 y = mean,
 color = true.mean, # set a specific color
 alpha = true.mean)) + # and transparency to
 # intervals containing and not containing the true mean

 # add a line showing the true mean
 geom_hline(yintercept = mean(vo2max)) +
 # add errorbars showing each interval
 geom_errorbar(aes(ymin = lower.limit, ymax = upper.limit)) +
 # scale the colors and transparency. Intervals not containing
 # the true mean are red.
 scale_color_manual(values = c("red", "black")) +
 scale_alpha_manual(values = c(1, 0.2)) +
 # Set label texts
 labs(x = "Sample",
 y = "Mean",
 alpha = "Contains\nthe true mean",
 color = "Contains\nthe true mean") +
 # Change the theme
 theme_classic()

Calculate the proportions of intervals not containing the true mean
longrun <- round(100 * (sum(cis$true.mean == FALSE) / sum(cis$true.mean == TRUE)), 2)
Almost 5%!

[image:]

Figure 17.7: 200 95% confidence intervals, based on the normal distribution, calculated from repeated samples from the same population. Red intervals indicate an interval that do not contain the true population average.

As we can see in Figure 17.7, we are really close to the expected 5%, our result is actually 5.89%. This means that if we do a study 1000 times and calculate the average and its confidence interval, in about 5% of the studies we will be missing the true mean. Seen from the other side, about 95% of the times, our interval will contain the true mean.

But why isn’t the result precisely 5%? It is due to the fact that the normal distribution is not a calibrated distribution to use for the approximation of a sampling distribution when sample sizes are low. We can instead use the t-distribution. (This distribution has something to do with beer!)

[image:]

The t-distribution has something to do with beer!

The t-distribution changes its shape depending on how many data points we have in our sample. This means that a smaller sample size will be reflected in the estimated sampling distribution through a wider interval. In the code and plot (Figure 17.8) below we have changed the calculation of the 95% confidence interval, we are using the t-distribution instead.

Code
Creat new variables with upper and lower limits of the confidence interval
cis <- results %>%
 # Using the t-distribution
 mutate(lower.limit = mean - qt(0.975, 20-1) * sd/sqrt(20),
 upper.limit = mean + qt(0.975, 20-1) * sd/sqrt(20)) %>%
 # Test if the true mean is within the limits
 # If the true mean is above the lower limit and below the upper limit then TRUE
 # otherwise FALSE
 mutate(true.mean = if_else(mean(vo2max) > lower.limit & mean(vo2max) < upper.limit,
 TRUE, FALSE))

Plot the data, only plotting 100 data points to make it suitable for every computer

cis[201:400,] %>%
 ggplot(aes(seq(1:nrow(.)),
 y = mean,
 color = true.mean, # set a specific color
 alpha = true.mean)) + # and transparency to
 # intervals containing and not containing the true mean

 # add a line showing the true mean
 geom_hline(yintercept = mean(vo2max)) +
 # add errorbars showing each interval
 geom_errorbar(aes(ymin = lower.limit, ymax = upper.limit)) +
 # scale the colors and transparency. Intervals not containing
 # the true mean are red.
 scale_color_manual(values = c("red", "black")) +
 scale_alpha_manual(values = c(1, 0.2)) +
 # Set label texts
 labs(x = "Sample",
 y = "Mean",
 alpha = "Contains\nthe true mean",
 color = "Contains\nthe true mean") +
 # Change the theme
 theme_classic()

Calculate the proportions of intervals not containing the true mean
longrun <- round(100 * (sum(cis$true.mean == FALSE) / sum(cis$true.mean == TRUE)), 2)

[image:]

Figure 17.8: 200 95% confidence intervals, based on the t-distribution, calculated from repeated samples from the same population. Red intervals indicate an interval that do not contain the true population average.

We are getting closer, from 5000 simulations of sampling from a population and creation of 95% confidence intervals based on the t-distribution we end up with 95.53% of confidence intervals containing the true population mean. The t-distribution is better calibrated for samples that are small. The two distributions (normal and t) are very similar when we are getting closer to sample sizes of n=30n=30.

17.5.2 Sample size and confidence intervals

The width of confidence intervals are determined by the mean, standard deviation and the sample size. If the sample size gets lower the width will increase. This means that when we have smaller samples will have less precision in our best guess of the population mean. We will still cover the true mean 95% of the time (if we repeat our study) but the range of possible values of the true mean will be wider.

17.6 Sampling distribution of IQ

IQ values are normally distributed with median 100 (since the distribution is normal, this should be very close the the mean) and standard deviation of 15. Using a sample from the population we can calculate a 95% confidence interval. We will do this with n=5, n=25 and n=100. You will have to execute the code. A 95% confidence interval based on the t-distribution can be calculated as:

Code
set the seed
set.seed(1)

A population of numbers
pop <- rnorm(100000, mean = 100, sd = 15)

Sampling from the distribution
n5 <- sample(pop, 5, replace = FALSE)
n25 <- sample(pop, 25, replace = FALSE)
n100 <- sample(pop, 100, replace = FALSE)

n = 10
mean_n5 <- mean(n5)
s_n5 <- sd(n5)

error_n5 <- qt(0.975, df = 5-1) * s_n5/sqrt(5)

n = 25
mean_n25 <- mean(n25)
s_n25 <- sd(n25)

error_n25 <- qt(0.975, df = 25-1) * s_n25/sqrt(25)

n = 100
mean_n100 <- mean(n100)
s_n100 <- sd(n100)

error_n100 <- qt(0.975, df = 100-1) * s_n100/sqrt(100)

Above we used the qt function to get the quantile corresponding to a 95% confidence interval. By running the function with qt(0.975, df = 100-1), and qt(0.975, df = 25-1) we can see that a smaller sample affects the t-distribution. Test what the result is if you only run qnorm(0.975).

We can collect the pieces and create a plot using the code below:

Code
df <- data.frame(sample.size = c(5, 25, 100),
 mean = c(mean_n5, mean_n25, mean_n100),
 error = c(error_n5, error_n25, error_n100))

df %>%
 ggplot(aes(as.factor(sample.size), mean)) +
 geom_errorbar(aes(ymin = mean-error, ymax = mean + error), width = 0.2) +
 geom_point(size = 3) +
 theme_classic()

What can you say about the effect of sample size on the confidence of an estimate?

17.7 A hypothesis test

We know that a random sample will have a mean close to the centre of the population distribution (100 in the case above). We want to know if chess players (Chess\text{Chess}) have higher IQ scores than average people (Average\text{Average}). We can create an alternative hypothesis stating that

HA:Chess≠Average\operatorname{H_A}: \text{Chess} \neq \text{Average}

The null hypothesis that we are comparing to is

H0:Chess=Average\operatorname{H_0}: \text{Chess} = \text{Average}

We collect data from chess players (n=24n=24). Use the data below to test H0\operatorname{H_0}.

	Chess player
	IQ

	1
	129

	2
	101

	3
	98

	4
	89

	5
	103

	6
	107

	7
	123

	8
	117

	9
	114

	10
	109

	11
	110

	12
	99

	13
	101

	14
	102

	15
	130

	16
	121

	17
	129

	18
	115

	19
	107

	20
	109

	21
	107

	22
	96

	23
	98

	24
	102

Try to calculate the sample average and a confidence interval and answer these questions:

	What is the average IQ among chess players?

	What is your best guess about the population average of chess players?

	What does the confidence interval say about your hypothesis?

Here is a possible solution
chess.players <- c(129, 101,98 ,89 ,103,107,123,117,114,
 109,110,99 ,101,102,130,121,129,115,
 107,109,107,96 ,98,102)

chess.mean <- mean(chess.players)

chess.error <- qt(0.975, df = 24-1) * sd(chess.players)/sqrt(24)

c(chess.mean - chess.error, chess.mean + chess.error)

17.8 Using a confidence interval when planning a study

We can calculate the mean change from pre- to post-training in the cycling study for V̇O2max.

For this exercise, use the cyclingstudy data set, you will find it in the exscidata package. The variables of interest are subject, group, timepoint and VO2.max. In the time-point variable, meso3 are the post-training values and pre are the pre-training values.

Calculate the mean change in absolute units (ml min-1) of V̇O2max for the whole data set together with the sample SD. Then calculate a confidence interval.

How do you interpret the confidence interval?

Here is a possible solution
library(tidyverse); library(exscidata)
data("cyclingstudy")

 cyclingstudy %>%
 select(subject, group, timepoint, VO2.max) %>%
 filter(timepoint %in% c("pre", "meso3")) %>%
 pivot_wider(names_from = timepoint, values_from = VO2.max) %>%
 mutate(change = meso3-pre) %>%
 group_by() %>%
 summarise(m = mean(change, na.rm = TRUE),
 s = sd(change, na.rm = TRUE),
 n = sum(!is.na(change)),
 error = qt(0.975, df = n -1) * s/sqrt(n),
 lower = m - error,
 upper = m + error) %>%
 print()

Check the answer

The confidence interval can be interpreted as: in 95% percent of confidence intervals created from repeated sampling we will have the true mean. The confidence interval we have created does not contain 0.

Let’s say that we are designing a new study. We want to be able to show a difference between pre- to post-training in V̇O2max of 100 ml min-1 as this might be an important difference. Given the standard deviation that you have calculated above, how many participants should be recruit to the study to be able to detect a difference of 100 ml min-1 and at the same time exclude the null-hypothesis that says that the true population average is 0.

Here you can try to calculate the lower limit of a 95% confidence interval given a standard deviation equal to what you calculated above and a mean change of interest of 100 ml min-1 using many different alternatives for the sample size.

A possible solution
Calculate sd
s <- cyclingstudy %>%
 select(subject, group, timepoint, VO2.max) %>%
 filter(timepoint %in% c("pre", "meso3")) %>%
 pivot_wider(names_from = timepoint, values_from = VO2.max) %>%
 mutate(change = meso3-pre) %>%
 group_by() %>%
 summarise(s = sd(change, na.rm = TRUE)) %>%
 pull(s)

Create a figure of lower limit of a confidence interval
#

data.frame(s = s) %>% # Add SD to a data frame and expand
 # the data frame with a sequence of sample sizes
 expand_grid(n = seq(from = 10, to = 100, by = 2)) %>%
 # Calculate the error using a t-distribution for the sequence
 # of sample sizes. Calculate the lower bound of a 95% confidence
 # interval as the mean of interest (100) - the error.
 mutate(error = qt(0.975, df = n - 1) * s / sqrt(n),
 cil = 100 - error) %>%
 # Plot the results.
 ggplot(aes(n, cil)) +
 geom_point() +
 geom_hline(yintercept = 0)

Try to answer the following questions:

	How could the above information help you when designing a study?

	Why is there a relationship between sample size and the lower bound of the confidence interval?

Check the answer

	When designing a study we state an alternative hypothesis, in the above case we use 100 ml min-1. We ask, if the alternative hypothesis is true and a new study also arrives at a similar variation in the outcome (SD), how many participants do we need to recruit to disprove the null-hypothesis? The graph indicates that we need > 25 participants.

	The confidence interval is affected by sample size in two ways. First we use the standard error to calculate the error (SE=s/n\operatorname{SE}=s/\sqrt{n}). As this quantity will become larger when n is smaller we will have less precision with small n. Also, the t-distribution is wider (heavier tails) with small n.

 ch018.xhtml

18 What is the p-value?

Consider the sampling distribution. This is an imaginary distribution of e.g. sample means gathered from repeated sampling from a population of numbers. Let’s say that our null-hypothesis, H0, is that the mean of a population is zero. We draw a sample of n=10n=10 and it turns out that it is not zero, it is about 1. We calculate the standard deviation of our sample, it is 2.

Based on these number, we can calculate a sample statistic, a t-value

t=m−μs/nt = \frac{m - \mu}{s/\sqrt{n}}

where mm is our sample mean, μ\mu is the hypothesized mean, ss is our sample standard deviation and nn is the sample size. tt is the sample statistic. As we have covered in the previous chapter, we do not know the true variation in the imaginary distribution of samples, ss is our best guess of the population standard deviation. Using ss we can model the imaginary sampling distribution.

It would look something like this (Figure 18.1).

Code
library(tidyverse)

ggplot(data = data.frame(x = c(-4, 4)), aes(x)) +

 stat_function(fun = dt, n = 1000, args = list(df = 9)) + ylab("") +
 scale_y_continuous(breaks = NULL) +
 labs(x = "") +
 theme_classic()

[image:]

Figure 18.1: An imaginary sampling distribution

The distribution above is the t-distribution with 10-1 degrees of freedom. Our calculated sample statistic can be inserted in the distribution.

Code
library(ggtext)

ggplot(data = data.frame(x = c(-4, 4)), aes(x)) +

 stat_function(fun = dt, n = 1000, args = list(df = 9)) + ylab("") +
 scale_y_continuous(breaks = NULL) +

 geom_vline(xintercept = (1-0) / (2/sqrt(10))) +
 annotate("richtext",
 x = 1.6,
 size = 2.8,
 y = 0.12,
 label = "The observed *t*",
 angle = -90) +

 labs(x = "") +
 theme_classic()

[image:]

Figure 18.2: An imaginary sampling distribution with a t-statistic.

Using the calculated t-value we may answer questions like: “If the null-hypothesis is true, how often would we observe our t-value, or an even more extreme value?” We can calculate this from the imaginary distribution as the area under the curve above our value.

Code
library(tidyverse)

ggplot(data = data.frame(x = c(-4, 4)), aes(x)) +

 stat_function(fun = dt,
 args = list(df = 9),
 xlim = c(4, (1-0) / (2/sqrt(10))),
 geom = "area", fill = "lightblue") +

 stat_function(fun = dt, n = 1000, args = list(df = 9)) + ylab("") +
 scale_y_continuous(breaks = NULL) +

 geom_vline(xintercept = (1-0) / (2/sqrt(10))) +
 annotate("text", x = 1.75, y = 0.25, label = "The observed t",
 size = 2.8, angle = -90) +

 annotate("text", x = 2.5, y = 0.15,
 size = 2.8, label = "Area of more\nextreme values") +

 labs(x = "") +
 theme_classic()

t <- (1-0) / (2 / sqrt(10))

p <- pt(t, df = 10-1, lower.tail = FALSE)

[image:]

Figure 18.3: An imaginary sampling distribution with a t-statistic.

In R, this area can be calculated using the pt() function:

t <- (1-0) / (2 / sqrt(10))

pt(t, df = 10-1, lower.tail = FALSE)

It turns out that 7% of the distribution can be found in the blue shaded area. We have now completed a one-sample t-test. However, we have to look again at our null-hypothesis which states H0=0H_0 = 0. There are two ways to disprove this hypothesis. We may find out that the value is lower or higher than 0. To account for both possibilities we calculate a “two sided p-value”. In practice we calculate the area under the curve above and below values corresponding to our observed distance from 0 (Figure 18.4).

2 * pt(t, df = 10-1, lower.tail = FALSE)

Code
library(tidyverse)

ggplot(data = data.frame(x = c(-4, 4)), aes(x)) +

 stat_function(fun = dt,
 args = list(df = 9),
 xlim = c(4, (1-0) / (2/sqrt(10))),
 geom = "area", fill = "lightblue") +

 stat_function(fun = dt,
 args = list(df = 9),
 xlim = c(-4, -(1-0) / (2/sqrt(10))),
 geom = "area", fill = "lightblue") +

 stat_function(fun = dt, n = 1000, args = list(df = 9)) + ylab("") +
 scale_y_continuous(breaks = NULL) +

 geom_vline(xintercept = (1-0) / (2/sqrt(10))) +
 annotate("text", x = 1.75, y = 0.2, label = "The observed t", angle = -90,
 size = 2.8) +

 annotate("text", x = 2.6, y = 0.12, label = "Area of more\nextreme values",
 size = 2.8) +

 labs(x = "") +
 theme_classic()

p <- 2 * pt(t, df = 10-1, lower.tail = FALSE)

[image:]

Figure 18.4: An imaginary sampling distribution with a t-statistic and a two-tailed test agaionst the null hypothesis.

As the area under the curve in the blue area is 14.83% of the distribution we may make a statement such as: “If the null-hypothesis is true, our observed value, or a value even more distant from 0 would appear 14.83% of the times upon repeated sampling”.

We can not really reject the null hypothesis as the result of our test is (our t-value, or a more extreme value) is so commonly found if the H0H_0 distribution is true.

You sample a new mean from n=10n=10 of 1.2, the standard deviation is 2.1. Calculate the t-statistic and the p-value with the H0=0H_0 = 0.

A possible solution

t <- (1.2 - 0) / (2.1/sqrt(10))

p <- 2 * pt(t, df = 10-1, lower.tail = FALSE)

Side note: Printing numbers in R: Sometimes, a ridiculous number appear in your console such as 4.450332e−054.450332e-05. This is actually 0.000044503320.00004450332 written in scientific notation. e-05 can be read as 10−510^{-5}. Rounding numbers in R is straight forward. Just use round(4.450332e-05, digits = 5) to round the number to 5 decimal points. However, you will still see the number in scientific notation. If you want to print the number with all trailing zeros you can instead use sprintf("%.5f", 4.450332e-05). This function converts the number into text and print what you want. The “%.5f” sets the number of decimal points to 5. This is confusing, I know!

18.1 p-values from two sample comparisons

In a two sample scenario, we can model the null-hypothesis using re-shuffling of the data.

We sample two groups, one group has done resistance-training, the other group endurance training. We want to know if you get stronger if you do strength training as compared to endurance training. We measure the groups after an intervention. They were similar prior to training so we think that it is OK to measure the post-training values of 1RM bench press.

These are:

strength.group <- c(75, 82.5, 87.5, 90, 67.5, 55, 87.5, 67.5, 72.5, 95)
endurance.group <- c(67.5, 75, 52.5, 85, 55, 45, 47.5, 85, 90, 37.5)

We can calculate the difference between the groups as:

mean.difference <- mean(strength.group) - mean(endurance.group)

We can simulate the null-hypothesis (H0H_0) by removing the grouping and sample at random to two groups. Read the code below and try to figure out what it does.

Code
set.seed(123)

results <- data.frame(m = rep(NA, 1000))

for(i in 1:1000){

Here we combine all observations
 all.observations <- data.frame(obs = c(strength.group, endurance.group)) %>%
 # based on a random process each iteration of the for-loop assign either endurance or strength to each individual
 mutate(group = sample(c(rep("strength", 10),
 rep("endurance", 10)),
 size = 20,
 replace = FALSE)) %>%
 group_by(group) %>%
 summarise(m = mean(obs))

 # calculate the difference in means and store in the results data frame
 results[i, 1] <- all.observations[all.observations$group == "strength", 2] - all.observations[all.observations$group == "endurance", 2]

 }

results %>%
 ggplot(aes(m)) + geom_histogram(fill = "lightblue", color = "gray50", binwidth = 1) +
 geom_vline(xintercept = mean.difference) +
 labs(x = "Mean difference",
 y = "Count") +
 theme_classic()

[image:]

Figure 18.5: Results of differences between groups using a permutation (or reshuffeling) procedure. The black line represents the

What does the graph above show (fig-permutation-test)? As the reshuffle process was done 1000 times we can count the number of means more extreme than the mean that we did observe.

p <- length(results[results$m > mean.difference,]) / 1000

The above code calculates the proportion of mean differences greater than the observed difference that occurred when we re-shuffled the groups by chance. The number of total re-shuffles that are greater than our observation corresponds to 3.3%.

Code
An illustration of the above

results %>%
 mutate(extreme = if_else(m > mean.difference, "More extreme", "Less extreme")) %>%
 ggplot(aes(m, fill = extreme)) + geom_histogram(color = "gray50", binwidth = 1) +
 scale_fill_manual(values = c("lightblue", "purple")) +
 geom_vline(xintercept = mean.difference) +
 labs(x = "Mean difference",
 y = "Count",
 fill = "") +
 theme_classic()

[image:]

Figure 18.6: Results of differences between groups using a permutation (or reshuffeling) procedure. The black line represents the observed difference.

We have now calculated the proportion of values more extreme than the observed. This would represent a directional hypothesis

HA:Strength>EnduranceH_A: \text{Strength} > \text{Endurance} We can account for the fact that the endurance group could be stronger than the strength group with the figure below (Figure 18.7). Try to figure out what the code does and what has changed from above.

Code
results %>%
 mutate(extreme = if_else(abs(m) > mean.difference, "More extreme", "Less extreme")) %>%
 ggplot(aes(m, fill = extreme)) + geom_histogram(color = "gray50", binwidth = 1) +
 scale_fill_manual(values = c("lightblue", "purple")) +
 geom_vline(xintercept = mean.difference) +
 labs(x = "Mean difference",
 y = "Count") +
 theme_classic()

p <- length(results[abs(results$m) > mean.difference,]) / 1000

[image:]

Figure 18.7: Results of differences between groups using a permutation (or reshuffeling) procedure. The black line represents the observed difference. More extreme permutations compared to our observed value are highlighted.

The proportion of more extreme values, irrespective of direction, compared to our observed value is 6.9%.

Above we have calculated p-values by comparing our results to a reference distribution of what could be reality if the null-hypothesis is true. This is how we should understand p-values.

This is a good place to stop and reflect:

	At what level of p are you comfortable rejecting a null-hypothesis?

	When planning a study we decide on a level of evidence needed to reject the null. If you would have planned a study, how do you motivate a certain level of evidence?

18.2 More p-values

In the example above where we used the reshuffling technique (also called a permutation test), we are limited by the number of times we reshuffle our data and the size of the groups to produce a valid p-value. As long as the data are approximately normally distributed, we can use a t-test instead. As outlined above, this test uses an imaginary sampling distribution and compare our results to a scenario where the null-hypothesis in true.

To test against the null hypothesis that the means of the groups described above are equal we would use a two-sample t-test. In R we could perform thsi test with the following code.

t.test(x = strength.group,
 y = endurance.group,
 paired = FALSE,
 var.equal = TRUE)

 Two Sample t-test

data: strength.group and endurance.group
t = 1.9451, df = 18, p-value = 0.06756
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.121613 29.121613
sample estimates:
mean of x mean of y
 78 64

The output of the two-sample t-test contains information on the test statistic t, the degrees of freedom for the test and a p-value. It even has a statement about the alternative hypothesis. We get a confidence interval of the mean difference between groups.

Does the 95% confidence interval say anything about the level of evidence needed to reject the null? Has somebody already decided for you? See in the help-file for the t-test (?t.test) and see if you can change the confidence interval to correspond to your level of evidence.

The t-test is quite flexible, we can do one-sample and two-sample t-tests. We can account for paired observation, as when the same participant is measured twice under different conditions.

In the one-sample case, we test against the null-hypothesis that a mean is equal to μ\mu where we specify the mu in the function.

If we have paired observations we set paired = TRUE, each row in such case must correspond to the same individual.

When we assume that the groups have equal variance (var.equal = TRUE) this corresponds to the classical two-sample case. A more appropriate setting is to assume that the groups do not have equal variance (spread), this is the Welch two-sample t-test (var.equal = FALSE).

By saving a t-test to an object we can access different results from it. To see what parts we can access we may use the names function which gives the names of the different parts of the results.

ttest <- t.test(strength.group, endurance.group, paired = FALSE, var.equal = FALSE)

names(ttest)

To access the confidence interval, we would use ttest$conf.int.

18.3 t-test examples

In the cycling data set we might want to know if the difference between pre- and post-data in squat jump is more or less than 0. Assuming that we use the same participants, this is a paired t-test.

We need to wrangle the data to set up our test.

Code
library(tidyverse); library(exscidata)

data("cyclingstudy")
Prepare the data
sj.max <- cyclingstudy %>%
 select(subject, timepoint, sj.max) %>%
 filter(timepoint %in% c("pre", "meso3")) %>%
 pivot_wider(names_from = timepoint, values_from = sj.max)

calculate the t-test, paired data
sj.ttest <- t.test(sj.max$pre, sj.max$meso3, paired = TRUE)

plot the data to see corresponding data
sj.figure <- sj.max %>%
 pivot_longer(names_to = "timepoint",
 values_to = "sj.max",
 cols = pre:meso3) %>%
 mutate(timepoint = factor(timepoint, levels = c("pre", "meso3"))) %>%
 ggplot(aes(timepoint, sj.max)) +
 geom_boxplot() +
 theme_classic() +
 labs(x = "Time-point",
 y = "Squat jump height (cm)")

create a summary statistic
sj.summary <- sj.max %>%
 pivot_longer(names_to = "timepoint",
 values_to = "sj.max",
 cols = pre:meso3) %>%
 group_by(timepoint) %>%
 summarise(m = mean(sj.max, na.rm = TRUE),
 s = sd(sj.max, na.rm = TRUE))

Plot the figure
sj.figure

[image:]

Figure 18.8

The above analysis can be summarised as: “Squat jump height was on average higher at pre- compared to post-intervention measurements (30.8 (SD: 3.2) vs. 29.9 (3.3), Figure 18.8), this did not lead to rejection of the null-hypothesis (level of α=0.05) of no difference between time-points (t(18)=1.79, p=0.091, 95% CI: -0.16, 1.94)”.

The figure adds to the analysis by guiding the reader to what is actually compared. We could improve the figure, maybe by adding the connection between repeated data points.

The interpretation above has “two levels”, first I describe that there actually is a difference in means between the time points, this is a statement about the data. Then we use the t-test to make a statement about the population. Notice that we use the standard deviation when describing the data and the t-statistic and confidence intervals when describing the our best guess about the population.

We also above state the level of α needed to reject the null hypothesis. This is our target error rate for rejecting the null-hypothesis in cases when we should not do so.

18.4 Error rates

Up to now we have not explicitly talked about the level of evidence needed to reject the null-hypothesis. The level of evidence needed is related to the nature of the problem. We can make two types of errors in classical frequentist statistics. A type I error is made when we reject the null when it is actually true. A type II error is when we fail to reject the null and it is actually false.

If we do not care that much about making a type I error we might be in a situation where a research project might conclude that a intervention/device/nutritional strategy is beneficial and if not, there is no harm done. The side effects are not that serious. Another scenario is when we do not want to make a type I error. For example if a treatment is non-effective, the potential side effects are unacceptable. In the first scenario we might accept higher error rates, in the second example we are not prepared to have a high false positive error rate as we do not want to recommend a treatment with side effects that is also ineffective.

A type II error might be serious if an effect is beneficial but we fail to detect it, we do not reject the null when it is false. As we will discuss later, error rates are connected with sample sizes. In a study where we have a large type II error because of a small sample size we risk not detecting an important effect.

Type I error might be thought of as the long run false positive rate. If we would have drawn samples from a population with a mean of 0 and test against the H0:μ=0H_0: \mu = 0. A pre-specified error rate of 5% will protect us from drawing the wrong conclusion but only to the extent that we specify. We can show this in a simulation by running the code below.

Code
set.seed(1)
population <- rnorm(100000, mean = 0, sd = 1)

results <- data.frame(p.values = rep(NA, 10000))

for(i in 1:10000){

 results[i, 1] <- t.test(sample(population, 20, replace = FALSE), mu = 0)$p.value

}

filter the data frame to only select rows with p < 0.05
false.positive <- results %>%
 filter(p.values < 0.05) %>%
 nrow()

p <- false.positive / 10000 # should be ~ 5%

When the null-hypothesis is true we will have equally many p-values in the range 0 to 0.05 as between 0.05 and 0.1 and so on. The p-values have an uniform distribution. We can confirm this by looking at the distribution of p-values in our simulation above (fig-null-hypothesis-p).

Code
results %>%
 ggplot(aes(p.values)) +
 geom_histogram(bins = 20,
 boundary = 0,
 fill = "steelblue",
 color = "gray5") +
 theme_classic() +
 labs(x = "P-values",
 y = "Number of simulations")

[image:]

Figure 18.9: P-values from 10000 t-test of samples from a population where the null-hypothesis is true.

18.5 P-values and confidence intervals

Transparent reporting of a statistical test include estimates and “the probability of obtaining the result, or a more extreme if the null was true” (the p-value). Estimates may be given together with a confidence interval. The confidence interval gives more information as we can interpret the magnitude of an effect and a range of plausible values of the population effect. Sometimes the confidence interval is large, we may interpret this as having more uncertainty.

In the cycling study we may test against the null-hypothesis that there is no effect of training on tte (time to exhaustion). Try to answer these questions by preparing and doing the test.

	What kind of t-test is suitable for testing pre vs. meso3 data in the tte variable?

	What level of evidence do you think is suitable for the test, what is your level of statistical significance?

	How do you interpret the p-value and confidence interval.

Below is example code to set up the test, try to set up your test on your own before looking at the code.

Code
library(tidyverse)
library(exscidata)

Prepare the data
tte.data <- cyclingstudy %>%
 select(subject, timepoint, tte) %>%
 pivot_wider(names_from = timepoint, values_from = tte) %>%
 print()

tte.ttest <- t.test(tte.data$meso3, tte.data$pre, paired = TRUE)

The point estimate
tte.ttest$estimate

Get the confidence interval
tte.ttest$conf.int

Get the p-value
tte.ttest$p.value

Discussing the above questions

	The t-test suitable for a paired comparisons of two set of values is the paired-sample t-test.

	The 5% level for statistical significance is hard imprinted in science. Why? Well, tradition! Ideally we should justify our choice of the level required to reject the null-hypothesis. Such justification could be done based on the consequences of knowing if an effect that we are studying is likely to be true in the real world (rejecting the null hypothesis). For example, if the consequence of recommending a treatment based on a study has potential negative consequences we want to keep the rate of calling false positive to a minimum.

	The p-value can be interpreted as the probability of obtaining a result as extreme or even more extreme than the observed value. The confidence interval is an interval containing the true population value in 95% of theoretical repeated studies.

 ch019.xhtml

19 Hypothesis tests and statistical power

In frequentist statistics as developed by Neyman and Pearson (Spiegelhalter 2019, 282–82), we use two hypotheses to plan our studies. The null-hypothesis is the one that we use for our hypothesis test. The alternative hypothesis is used to make an estimation of the required sample size in the study. As we are designing a test about the null-hypothesis we can ultimately make two mistakes. First, we could end up rejecting the null-hypothesis despite it being true. If we compare two groups and end up with a result from our study sample rejecting the null-hypothesis even though there is no differences between groups on the population level, we make a Type I error. Instead, if there is a true difference between groups on the population level, but our test fail to reject the null-hypothesis we make Type II error.

In previous chapters we have used the t-test to perform statistical hypothesis tests, we will use this test to further explore the concept of power analysis.

19.1 Defining the alternative hypothesis

According to the Neyman-Pearson approach to statistical testing we should plan our studies with two known (long-run) error-rates. First we should specify what percentage of studies would reject the null-hypothesis if it is actually true. This error-rate is referred to as α\alpha. Second, we should specify a rate at which we are willing to miss rejecting the null-hypothesis (or finding evidence for an effect/difference of a certain size) if the alternative hypothesis actually exists in the population. This error rate is called β\beta but often expressed as 1−β1-\beta (statistical power). If we want to have a power (1−β1-\beta) of 90% we simply state that if the effect exists in the population we will find it with our test in 90% of studies given repeated sampling.

When designing a study we want to balance the two types of errors. As previously noted, we might be in a situation where a Type II error is relatively more serious than a Type I error. If we are trying to determine if a training method without any negative side effects is beneficial on performance, a Type I error might not be so serious as we would recommend using a method without any beneficial effect but also without harmfull effects. If there is a cost of implementing a treatment or training method on the other hand, we want to be more carefull with recommending it as if it has no positive effect the cost of implementation would mean negative consequences for e.g. an athlete.

When designing a study we are often interested in the number of participants needed to obtain certain error-rates. The power of a test, defined as the long-run chance of “detecting” a true alternative hypothesis depends on the size of the effect in the alternative hypothesis, the number of participants in the study, and the α\alpha level. In the figure below we have plotted power values as a function of the sample size, given a fixed size of the effect of 0.4 (see below) and different values of the α\alpha error-rate of 0.001-20%.

[image:]

Power as a function of sample size

This means that: If there is a true effect in the population, we will be more likely to reject the null-hypothesis if we

	Increase the sample size, or

	Increase the rate at which we would reject the null-hypothesis if it was actually true (the α\alpha-level)

19.2 The size of the effect

Above we used a fixed standardized effect size of 0.4 to obtain power values. In the case of comparing two groups, an appropriate standardized effect-size (ES) is the ratio of a meaningful difference (MD) to the estimated population standard deviation (SD)

ES=MDSDES = \frac{MD}{SD} Finding a meaningful difference is the tricky part in power calculations. In a clinical setting for patient populations, this could mean a difference induced by the treatment that leads to a perceived beneficial effect for an individual. As the outcome of a study could be a reduced pain-score or blood pressure, the design of the study needs to address what difference is of importance.

In elite sports, an improvement in an athletes performance of 0.3-0.4 times the within-athlete performance variability was considered important as it would increase the chance of winning a competition from 38 to 48% for a top athlete (Hopkins, Hawley, and Burke 1999).

19.3 Power and study designs

In healthy Norwegian women between between 30 and 39 years of age, the average VO2max has been estimated to 40 with a standard deviation of 6.8 (Loe et al. 2013). From the age of 30, VO2max decreases by about 3 ml kg-1 min-1 per every ten years. Let’s say that we want to design a study to investigate the effect of a new training method. We might then think that an improvement of VO2max corresponding to a five year decline (half of the average ten year decline) would be important to detect. We compare two training methods in two parallel groups, one group gets to train with traditional method, the other group trains with the our new method. We plan to measure VO2max in both groups, after the intervention. The null hypothesis says that the groups are not different after the intervention. The alternative hypothesis states that the new method leads to a difference between training methods of at least 1.5 ml kg-1 min-1 between groups. We will accept an α\alpha error rate of 5% and β\beta error rate of 20% as we aim for a 80% chance of detecting a true effect (of at least 1.5 ml kg-1 min-1), if it is actually true.

We now have all the numbers we need for a sample size estimation. In R the pwr package provide functions for calculation of sample size, power or effect-sizes in commonly used statistical tests. The effect-size (dd) can be calculated as the smallest effect of interest divided by the population standard deviation d=1.56.8=0.22d = \frac{1.5}{6.8} = 0.22. We can input our numbers in the function pwr.t.test.

library(pwr)

pwr.t.test(d = 1.5/6.8, sig.level = 0.05, power = 0.8)

 Two-sample t test power calculation

 n = 323.5688
 d = 0.2205882
 sig.level = 0.05
 power = 0.8
 alternative = two.sided

NOTE: n is number in *each* group

From the output we can see that we need more than 324 participants in each group to get a power of 80% given an significance-level (α\alpha) of 5%. This is a BIG study!

However, the power of a study is also influence by the study design. In the example above we used a single test after the intervention to determine the number of participants. This is an inefficient design as we need more participants to account for the uncertainty in the sampling process. If we instead rephrase the question to concern the change of VO2max between groups and measure each participant before and after the intervention we are designing a more efficient study, fewer participants are needed to reach the same power. We can calculate an approximate standard deviation of the change score (difference between pre- and post-treatment measurements) by combining an expected SD of pre- and post-treatment scores and the correlation between them (Higgins, Li, and Deeks 2019). We get these numbers from previous studies (Loe et al. 2013; Astorino et al. 2013).

We are still interested in a difference between groups of 1.5 ml kg-1 min-1, i.e. the alternative hypothesis is that the two training methods we are examining will differ 1.5 ml kg-1 min-1 in their average responses. The SD of the change score is determined to be 4.7, the resulting standardized effect size is therefore about 0.32. Given the same power and significance level we get the resulting sample size estimate:

library(pwr)

pwr.t.test(d = 1.5/4.7, sig.level = 0.05, power = 0.8)

 Two-sample t test power calculation

 n = 155.083
 d = 0.3191489
 sig.level = 0.05
 power = 0.8
 alternative = two.sided

NOTE: n is number in *each* group

A change in the design of the study resulted in a sample size less than half of the more inefficient study.

 ch020.xhtml

20 Pre- to post-treatment analysis

20.1 Background

In sport science (and e.g. medical-, nutritional-, psychological-sciences), intervention-studies are common. We are interested in the effect of e.g. a training method, nutritional supplement or drug. The outcome in these studies could be physical performance, degree of symptoms, muscle size or some other measure that we are interested in studying. These studies are often called Randomized Controlled Trials (RCT).

The choice of study design relates to the research-question and dictates what statistical methods can be applied. The study design affects the ability of the study to detect an effect (the power). A common case of a RCT is the parallel-groups design. In a parallel-group design participants are allocated to two or more “treatment groups”, at random, one group gets a treatment, the other group acts as the control. Usually, a measurement is made prior to the intervention (Baseline) and after the intervention. This is a common design when wash-out period is not possible and thus, the two treatment can not be compared within the same individual.

In a design where we have a Treatment group and a control group for comparison hypothesized outcomes can look something like in Figure 20.1.

[image:]

Figure 20.1: Hypothesized values from a simple pre-post parallel-groups design

Another common scenario is that we expect progress in two different treatments groups as in Figure 20.2.

[image:]

Figure 20.2: Hypothesized values from a simple pre-post parallel-groups design including to different treatments

In both scenarios we are interested in the treatment effect (or the difference in effect of two different treatments). This means that we want to establish if

ΔYA−ΔYB≠0 \Delta Y_A-\Delta Y_B \neq 0

meaning that the null hypothesis is that the change (Δ\Delta) in group A is not different to the change in group B. To evaluate these studies we could do a t-test on the change score between groups. This is equivalent to a regression model where we estimate the difference between groups:

outcome=β0+β1xGroupB\text{outcome} = \beta_0 + \beta_1 x_\text{GroupB} In R, these to alternatives can be easily fitted using the code presented in code chunk (CC) 1:

A t-test example
with(data, t.test(outcome_A, outcome_B, paired = FALSE)

The same using a regression model
lm(change ~ group, data = data)

This seemingly simple solution has some benefits but does not take into account that baseline values can affect the interpretation of a pre- to post-intervention study through regression towards the mean.

If we analyze change scores (post−prepost-pre), regression towards the mean will give an overestimation of the effect if there is, by chance, a difference in baseline values between groups (lower values in treatment group) (Vickers and Altman 2001). If we analyze follow up scores (differences in post-scores between groups), the pattern will be reversed. To fix this problem we could control for the relationship between baseline values and the change scores. This technique is called Analysis of Co-Variance (ANCOVA), where the baseline is considered the added co-variance. This is an extension of the simple linear regression model (CC2).

Extending the linear regression equation
lm(change ~ baseline + group, data = data)

We prefer the ANCOVA model over the ordinary regression model as the ANCOVA model has better power (Senn 2006). The ANCOVA model also gives unbiased estimates of differences between groups (Vickers and Altman 2001). We can use the ANCOVA model when the allocation of participants have been done at random (e.g. RCTs) meaning that differences at baseline should be due to random variation.

20.2 Exercises: Ten vs thirty RM-study

Thirty-one participants were assigned to one of two groups training with either 10 repetition maximum (RM) or 30RM, 27 participants completed the trial to the mid-study evaluation and 24 participants completed the full study. The main question in the study was whether these two different treatments resulted in different magnitudes of strength development or muscle hypertrophy (we are interested in strength).

The data is available in the exscidata package and contains the following variables:

	participant: ID of participant

	time: prior to pre or after the intervention post

	group: The intervention group

	exercise: The exercise that was tested, legpress, benchpress or bicepscurl

	load: The load lifted in 1RM test (kg)

An example of loading the data and plotting the data can be seen in CC3:

library(tidyverse); library(exscidata)
data("tenthirty")

 tenthirty %>%
 mutate(time = factor(time,
 levels = c("pre", "mid", "post"))) %>%
 ggplot(aes(time, load, fill = group)) +
 geom_boxplot() +
 facet_wrap(~ exercise, scales = "free") +
 theme_minimal()

The main purpose of our analysis is to answer the question: what training method can we recommend for improving maximal strength? To try to answer this question we will (1) select a suitable 1RM test exercise, (2) choose the most appropriate statistical model. To illustrate differences between models we will compare different models (lm on the change-score, lm with baseline as a covariate, lm on post-values with baseline as a covariate).

20.2.1 Reducing the data set

For this exercise we will focus on the pre- to post-analysis of leg-press data. To filter the data set we can use the code in CC4. We will have to re-shape the data for the calculation of change scores. We do this and add a simple calculation of change scores post−prepost-pre.

library(exscidata); data("tenthirty")

tenthirty_reduced <- tenthirty %>%
 filter(time != "mid",
 exercise == "legpress") %>%
 # To get the variables in the correct order we need...
 mutate(time = factor(time,
 levels = c("pre", "post"))) %>%
 pivot_wider(names_from = time,
 values_from = load) %>%
 mutate(change = post - pre) %>%
 filter(!is.na(change))

We are now ready to fit some models, these are outlined in CC5.

Before we look at the models, a word of caution: We should not select the model that best suit our hypothesis or belief. Instead we should formulate a model that fits our question and interpret the results from a model that meets the assumptions of the analysis (in the case of regression analysis: homoscedasticity, normally distributed residuals etc.).

In this study it is reasonable to account for the baseline difference between groups. These differences are there because of the randomization. We may account for them by including them in our analysis (as in m2 and m4). To check if the addition of the baseline helps explain the data we can perform analysis of variance when comparing two models using the anova()-function.

The null hypothesis is that the addition of the pre variable does not help explain the observed variation in the data. Comparing model 1 and 2, and 3 and 4 (these have the same dependent variable) we see that there is fairly strong evidence against the null hypothesis (CC6).1

To check if the models meet the assumptions of regression models we can use the plot function. Let’s first look at m1 comparing change score between groups.

[image:]

Diagnostic plots of Model 1

The plots in Figure @ref(fig:m1-diagnostics-plot) suggests that there is evidence of violation of the assumption of homoscedasticity (Residuals vs fitted, larger spread in higher fitted values also evident in the scale location plot). We can also see that the residuals are not normally distributed (Normal Q-Q plot). This model is not that good.

Let’s check the model with change between groups controlling for baseline values (Model 2). To create a similar grouped plot as above, use the code in CC7

This is not a perfect model either, but the residuals looks a bit better. In fact the only model that would (almost) fail a more formal test is Model 1. The Brusch-Pagan test (see CC8) tests for heteroscedasticity.2

20.2.2 Inference

Success! Our models are somewhat OK. We may draw inference from them. It turns out that model estimating the change score or the post score does not matter when we control for the baseline. The difference between groups are exactly the same in Model 2 and 4 (CC9).

The pre variable changes as the relationship to the change is different to the relationship to post scores but the model does the same thing! This is now a question of how we would like to frame our question. If the question is “do people that train with 10RM increase their strength more than people that train with 30RM (assuming a similar baseline strength level)?” then model 2 is preferred. If the question is “are people that trained with 10RM stronger than people who have trained with 30RM (assuming a similar baseline strength level)?”, model 4 is preferred. The differences are basically semantics as the models tests the same thing, the differences between groups when controlling for baseline differences.

As we control for the baseline, we removes some of the unexplained error from the model, this will lead to a more powerful model. This is reflected in the stronger evidence3 against the null-hypothesis of no difference between groups.

20.2.3 What if the model diagnostics says the models are no good?

Biological data and performance data often exhibit larger variation at larger values. This may lead to heteroscedasticity. A common way of dealing with this is the log transformation. Transforming the data to the log scale changes the interpretation of the regression coefficients.

A linear model with the dependent variable on the linear scale!
m.linear <- lm(post ~ pre + group, data = tenthirty_reduced)

A linear model with the dependent variable on the log scale!
m.log <- lm(log(post) ~ pre + group, data = tenthirty_reduced)

As we interpret the regression coefficients as differences the laws of the log are important to remember:

log(AB)=log(A)−log(B)log(\frac{A}{B}) = log(A) - log(B) This means that the difference between two variables on the log scale is the same as the log of their ratio. When we back-transform values from the log scale we get the fold differences.

Let’s say that we have a mean in group A of 40 and a mean in group B of 20. The difference is 20. If we estimate the difference on the log scale however we will get (CC9):

a <- log(40/20)

b <- log(40) - log(20)

c <- 40/20

exp(a)
exp(b)
c

The exp function back-transforms data from the log scale. Back-transforming a difference between two groups (as estimated in our model) will yield the fold-difference, this can be calculated as a percentage difference. In the code chunk below the log-difference between groups is transformed to percentage differences using:

Percentage difference=(1−exp(estimate))×100\text{Percentage difference} = (1-\operatorname{exp}(\text{estimate})) \times 100

If we want to express the 30RM group as a percentage of the 10RM group we could remove 1 from the equation:

Percentage of 10RM=exp(estimate)×100\text{Percentage of 10RM} = \operatorname{exp}(\text{estimate}) \times 100

The function tidy from the broom package is used to access the model output.

Warning: package 'broom' was built under R version 4.4.1

The 30RM group is 11.3% weaker than the 10RM group. Alternatively we can express the values as a percentage of the 10RM group. The 30RM group has a strength level that is 88.7% of the 10RM group.

Similarly to the point estimate, a confidence interval may also be back-transformed.

20.3 Case study: Single vs. multiple sets of training and muscle mass

In this study, n = 34 participants completed a resistance training intervention with multiple-set and single-set randomized to either leg. Muscle mass was measured through the use of regional estimation of lean mass with a DXA machine. In this case study we will analyze data were participants have been selected either to belong to the single- or multiple-set group. This means we will only analyze one leg per participant!

20.3.1 Prepare the data set

The data can be found in the exscidata package as the dxadata data set, use ?dxadata to inspect the different variables. The data set is quite complex, use the code below to get the correct, reduced data set.

We will randomly select participants left of right leg. To get the same estimates as in these examples you need to set the seed to 22 before the randomization (set.seed(22)).

Copy this code to get the correct data set.

library(exscidata); library(tidyverse)
data("dxadata")

Set the random number generator
set.seed(85)

 # Create a data frame with "selected" legs
 # this data frame will help us "randomize" participants to either group.
legs <- dxadata %>%
 filter(include == "incl") %>%
 distinct(participant) %>%
 mutate(selected.leg = sample(c("L", "R"), size = nrow(.), replace = TRUE))

dxadata_reduced <- dxadata %>%
 # Filter only participants completing at least 85% of the prescribed sessions
 filter(include == "incl") %>%
 # Select relevant columns
 select(participant:sex, lean.left_leg, lean.right_leg) %>%
 # Using pivot longer we gather the lean mass data
 pivot_longer(names_to = "leanleg",
 values_to = "mass",
 cols = lean.left_leg:lean.right_leg) %>%
 # Change the leg identification from the DXA machine
 mutate(leanleg = if_else(leanleg == "lean.left_leg", "L", "R")) %>%
 # Gather data from the training volume variable to "sets"
 pivot_longer(names_to = "sets",
 values_to = "leg",
 cols = multiple:single) %>%
 # Filter observations to correspond to the training volume variable
 filter(leg == leanleg) %>%
 # Join the data set with the selected legs data set
 inner_join(legs) %>%
 # Filter to keep only "selected" legs, these are the legs that we picked randomly above
 filter(leg == selected.leg) %>%
 # Select relevant variables
 select(participant, time, sex, sets, mass)

20.3.2 Exploratory analysis

Use descriptive methods (summary statistics and figures to describe results from the trial). What are the mean and standard deviations of the mass variable for each time and training volume (sets). Use tables and figures to show the results.

Here is a possible solution for a table

We want to summarize data per volume condition, sex and time-point and we want the means, standard deviations and the number of observations.

 ch021.xhtml

References

Astorino, T. A., M. M. Schubert, E. Palumbo, D. Stirling, D. W. McMillan, C. Cooper, J. Godinez, D. Martinez, and R. Gallant. 2013. “Magnitude and Time Course of Changes in Maximal Oxygen Uptake in Response to Distinct Regimens of Chronic Interval Training in Sedentary Women.” Journal Article. Eur J Appl Physiol 113 (9): 2361–69. https://doi.org/10.1007/s00421-013-2672-1.

Broman, Karl W., and Kara H. Woo. 2018. “Data Organization in Spreadsheets.” Journal Article. The American Statistician 72 (1): 2–10. https://doi.org/10.1080/00031305.2017.1375989.

Chambers, John M. 2009. Software for Data Analysis: Programming with R. Nachdr. Statistics and Computing. New York, NY: Springer.

Ellefsen, S., D. Hammarstrom, T. A. Strand, E. Zacharoff, J. E. Whist, I. Rauk, H. Nygaard, et al. 2015. “Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training.” Am. J. Physiol. Regul. Integr. Comp. Physiol. 309 (7): R767–779.

Hammarström, Daniel, Sjur Øfsteng, Lise Koll, Marita Hanestadhaugen, Ivana Hollan, William Apró, Jon Elling Whist, Eva Blomstrand, Bent R. Rønnestad, and Stian Ellefsen. 2020. “Benefits of Higher Resistance-Training Volume Are Related to Ribosome Biogenesis.” Journal Article. The Journal of Physiology 598 (3): 543–65. https://doi.org/10.1113/JP278455.

Haun, C. T., C G. Vann, C. Brooks Mobley, Shelby C. Osburn, Petey W. Mumford, Paul A. Roberson, Matthew A. Romero, et al. 2019. “Pre-Training Skeletal Muscle Fiber Size and Predominant Fiber Type Best Predict Hypertrophic Responses to 6 Weeks of Resistance Training in Previously Trained Young Men.” Journal Article. Frontiers in Physiology 10 (297). https://doi.org/10.3389/fphys.2019.00297.

Haun, C. T., C. G. Vann, C. B. Mobley, P. A. Roberson, S. C. Osburn, H. M. Holmes, P. M. Mumford, et al. 2018. “Effects of Graded Whey Supplementation During Extreme-Volume Resistance Training.” Journal Article. Front Nutr 5: 84. https://doi.org/10.3389/fnut.2018.00084.

Higgins, Julian PT, Tianjing Li, and Jonathan J Deeks. 2019. “Choosing Effect Measures and Computing Estimates of Effect.” Book Section. In Cochrane Handbook for Systematic Reviews of Interventions, 143–76. https://doi.org/https://doi.org/10.1002/9781119536604.ch6.

Hopkins, W. G. 2000. “Measures of Reliability in Sports Medicine and Science.” Journal Article. Sports Med 30 (1): 1–15. http://www.ncbi.nlm.nih.gov/pubmed/10907753.

Hopkins, W. G., J. A. Hawley, and L. M. Burke. 1999. “Design and Analysis of Research on Sport Performance Enhancement.” Journal Article. Med Sci Sports Exerc 31 (3): 472–85. https://doi.org/10.1097/00005768-199903000-00018.

Ioannidis, John P. A. 2005. “Why Most Published Research Findings Are False.” Journal Article. PLOS Medicine 2 (8): e124. https://doi.org/10.1371/journal.pmed.0020124.

Leek, J. T., and R. D. Peng. 2015. “Statistics: P Values Are Just the Tip of the Iceberg.” Journal Article. Nature 520 (7549): 612. https://doi.org/10.1038/520612a.

Loe, H., Ø Rognmo, B. Saltin, and U. Wisløff. 2013. “Aerobic Capacity Reference Data in 3816 Healthy Men and Women 20-90 Years.” Journal Article. PLoS One 8 (5): e64319. https://doi.org/10.1371/journal.pone.0064319.

Navarro, D. 2020. Learning Statistics with r.

Newell, J., D. Higgins, N. Madden, J. Cruickshank, J. Einbeck, K. McMillan, and R. McDonald. 2007. “Software for Calculating Blood Lactate Endurance Markers.” Journal Article. Journal of Sports Sciences 25 (12): 1403–9. https://doi.org/10.1080/02640410601128922.

Peng, R. D., F. Dominici, and S. L. Zeger. 2006. “Reproducible Epidemiologic Research.” Journal Article. Am J Epidemiol 163 (9): 783–89. https://doi.org/10.1093/aje/kwj093.

Senn, S. 2006. “Change from Baseline and Analysis of Covariance Revisited.” Journal Article. Stat Med 25 (24): 4334–44. https://doi.org/10.1002/sim.2682.

Spiegelhalter, D. J. 2019. The Art of Statistics : How to Learn from Data. Book. First US edition. New York: Basic Books.

Stephen, G. Powell, R. Baker Kenneth, and Lawson Barry. 2009. “Errors in Operational Spreadsheets.” Journal Article. Journal of Organizational and End User Computing (JOEUC) 21 (3): 24–36. https://doi.org/10.4018/joeuc.2009070102.

Vickers, Andrew J., and Douglas G. Altman. 2001. “Analysing Controlled Trials with Baseline and Follow up Measurements.” Journal Article. BMJ : British Medical Journal 323 (7321): 1123–24. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1121605/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1121605/pdf/1123.pdf.

Wickham, Hadley. 2014. “Tidy Data.” Journal Article. Journal of Statistical Software; Vol 1, Issue 10 (2014). https://www.jstatsoft.org/v059/i10.

Wickham, Hadley, and Garrett Grolemund. 2017. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. 1st ed. Paperback; O’Reilly Media. http://r4ds.had.co.nz/.

Ziemann, Mark, Yotam Eren, and Assam El-Osta. 2016. “Gene Name Errors Are Widespread in the Scientific Literature.” Journal Article. Genome Biology 17 (1): 177. https://doi.org/10.1186/s13059-016-1044-7.

EPUB/media/file6.gif

EPUB/media/file27.png

EPUB/media/file43.png

EPUB/media/file18.png

EPUB/media/file44.png

EPUB/media/file26.png

EPUB/media/file61.png

EPUB/media/file35.png

EPUB/media/file5.gif

EPUB/media/file53.png

EPUB/media/file28.png

EPUB/media/file10.png

EPUB/media/file19.png

EPUB/media/file45.png

EPUB/media/file36.png

EPUB/media/file62.png

EPUB/media/file4.gif

EPUB/nav.xhtml

Table of contents

		1 Quantitative methods and statistics (In Sport and Exercise Science)

		2 Introduction		2.1 Prerequisites

		3 Introduction to data science		3.1 Making sense of data, transferable skills and teamwork

		3.2 Replication and Reproducibility

		3.3 Tools in data science

		3.4 Installing and getting to know the required software		3.4.1 R and RStudio

		3.4.2 Git and Github

		3.4.3 Connecting to GitHub

		3.4.4 A note on Git and clients

		3.4.5 Quarto and friends

		3.5 Summing up and where to find help		3.5.1 A (small) list of reference material and resources

		4 Storing data in spreadsheets and understanding tabular data		4.1 Cells and simple functions

		4.2 Tidy data and data storage

		4.3 Recording data

		4.4 Saving data

		5 Getting to know R and RStudio		5.1 The Anatomy of RStudio		5.1.1 The source editor

		5.1.2 Environment

		5.1.3 The console

		5.1.4 Files, plots, packages and help files

		5.2 Reproducible data science using RStudio

		5.3 Basic R programming, first steps		5.3.1 Objects and assignment

		5.3.2 R as a giant calculator

		5.3.3 Different types of data

		5.3.4 Combining data

		5.3.5 Logical operations and conditions

		5.3.6 Functions

		5.3.7 Functions and packages

		5.4 Basics R programming: Installing and using swirl

		5.5 File formats for editing and executiong R code		5.5.1 R scripts

		5.5.2 R markdown and quarto files

		6 Creating your first graph		6.1 Resources

		6.2 Learning objectives

		6.3 Prerequisites

		6.4 The ggplot2 system

		6.5 Different geoms using real data		6.5.1 A plot of values per group

		6.5.2 Data over time per group and individual

		6.5.3 Titles and labels

		6.5.4 Annotations

		6.6 Themes

		6.7 Test your understandning

		7 Wrangling data to create your first table		7.1 Introduction		7.1.1 Resources

		7.2 Making “Table 1”		7.2.1 The pipe operator and select

		7.2.2 Filter observations

		7.2.3 Create or change variables

		7.2.4 Grouped operations and summary statistics

		7.2.5 Starting the table generator - The gt() function.

		7.2.6 Working with tables in quarto

		7.3 An exercise in data wrangling and tables

		7.4 References and footnotes

		8 Writing your first reproducible report		8.1 RStudio projects and your reproducible report

		8.2 Getting started with R projects		8.2.1 What folder am I in?

		8.3 Authoring reports in quarto		8.3.1 The Markdown syntax, and friends

		8.3.2 Additional formatting

		8.3.3 Code chunks

		8.3.4 Cross-referencing, references and footnotes

		8.4 Additional files and folder structures in a complete analysis project		8.4.1 The readme-file

		8.4.2 /resources

		8.4.3 /data

		8.4.4 /figures

		8.4.5 /R

		8.5 Quarto formats		8.5.1 Microsoft Word intergration in R Markdown and Quarto

		8.6 References and footnotes

		9 Version control and collaboration		9.1 Why version control?

		9.2 Three ways of hooking up to GitHub		9.2.1 Create a new repository on GitHub and clone it

		9.2.2 Create an online repository from a local folder

		9.2.3 Create an online repository from a local git repository

		9.3 Git commands and workflows		9.3.1 Add, commit and push

		9.3.2 Collaboration, pull, clone and fork

		9.3.3 Branches

		9.3.4 Conflicts

		9.4 Additional great things about GitHub

		9.5 When will this knowledge be handy?

		9.6 Resources

		9.7 Footnotes and references

		10 Reliability in the physiology lab		10.1 Smallest worthwhile change or effect

		11 Introduction to the molecular exercise physiology lab		11.1 Health and safety in the lab

		11.2 Good laboratory practice

		11.3 The laboratory journal

		11.4 Keeping it digital - Using our electronic lab journal		11.4.1 What to write in the journal

		11.4.2 Structure of an entry

		11.4.3 Relationship between the laboratory journal and your samples, solutions, tubes etc.

		11.5 Protocols and experiments in the course

		12 The linear model		12.1 Straight lines

		12.2 Fitting regression models in R		12.2.1 Checking our assumptions

		12.3 Check the results

		12.4 Interpreting the results

		12.5 Do problematic observations matter?

		12.6 A more intepretable model		12.6.1 A note about printing the regression tables

		12.7 An exercise

		13 Linear and curve-linear relationships, and predictions		13.1 Predicting from data

		13.2 Uncertanties in predictions

		13.3 The workload-lactate relationship

		14 Categorical predictors a